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Abstract

This paper proposes a novel numerical methodology for quantifying credit port-
folio risk, based on the multi-factor Merton model. This methodology consists of
two steps. The first step is a numerical algorithm for computing moment generat-
ing function very quickly. The second one is a fast Laplace inversion algorithm first
introduced by de Hoog et al. The moment generating function computed in the
first step is transformed into a loss distribution function through the second step.
It is demonstrated that the risk measures such as VaR and CVaR obtained by this
methodology are sufficiently accurate, for a wide range of portfolios. Furthermore,
computation time depends on portfolio size quite moderately in this methodology.
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algorithm for computing the risk contributions of obligors to VaR and CVaR.

JEL classification : C63, G21.

Keywords : multi-factor model, credit portfolio risk, credit concentration,
risk contribution, Laplace inversion.

∗The views expressed in this paper are those of the authors, and do not necessarily reflect those of
their institution.

†yasushi-takano@fintec.co.jp
‡jiro-hashiba@fintec.co.jp

1



1 Introduction

It is important for a bank to manage the risks originating from its business activities.
In particular, the credit risk underlying its credit portfolio is often the largest risk in a
bank. Therefore, credit risk management is an important function in a bank to maintain
its financial soundness. In order to quantitatively assess to what extent a bank is exposed
to the risk of bankruptcy, it is necessary to measure the credit risk at portfolio level.
The measured credit risk is then used to assign risk capital, which a bank should hold to
absorb potential losses arising from its credit portfolio.

One of the major origins of credit risk at portfolio level is concentration risk, which
can be grouped into two categories : name concentration and sector concentration 1.
Recently, quantification of these concentration risks has been a central issue both for
supervisors and bank practitioners. This is partly because the asymptotic single risk factor
(ASRF) model adopted in Basel II is based on the assumption that a bank’s portfolio is
completely diversified and the systematic factor is univariate 2. Name concentration and
sector concentration to a specific industry or region can not be taken into account under
this assumption. In order not to underestimate the credit risk at portfolio level, these
concentration risks must be appropriately evaluated.

Monte Carlo simulation is a standard method for measuring credit portfolio risk.
However, this method is time-consuming in general. This is problematic if a bank attempts
to rebalance its credit portfolio actively and frequently. To rebalance a portfolio, we
usually need information about how individual transactions such as asset sales or credit
derivatives will affect the total credit risk. In principle, this can be done by directly
comparing the total risks before and after executing the transactions, or appropriately
allocating the total risk to each transaction. To frequently obtain these information for
many transactions, computation must be done very quickly.

In summary, credit risk managers in a bank are always faced with the following chal-
lenges.

• How can concentration risks be quantified?

• How can risk measures be computed in a short time?

• How can the contribution of individual transactions to total risk be computed?

Although it is difficult to satisfy all these requirements at the same time, many theoretical
advances have been made in recent years by academics, practitioners, and supervisory
authorities. Some of these methodologies have proposed analytic expressions for portfolio
risk information such as loss distribution function or VaR. As compared to familiar Monte
Carlo simulation, these analytic methods have an advantage that risk measures can be
computed very quickly.

1For a comprehensive survey on these concentration risks, see BCBS (2006).
2See BCBS (2005).
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For example, the granularity adjustment due to Gordy (2003) takes into account name
concentration effects, by considering the second order correction to the ASRF model.
To include sector concentration effects in addition, Pykhtin (2004) has generalized this
method to multi-factor cases. In this generalization, multivariate systematic factors are
replaced with a linear combination of them, yielding a model that incorporates only one
factor effectively. Martin et al. (2001) has applied the saddle-point method, which is
familiar in physics, to portfolio risk quantification. In this method, an approximate ex-
pression of the Laplace inversion of the moment generating function (MGF) is obtained.
This plain saddle-point method has been further improved by Martin and Ordovás (2006),
based on conditional independence models. The main feature of this improvement is that
the saddle-point approximation is applied to the conditional MGF, not to the uncondi-
tional MGF. This modification requires additional computation time, but the approxima-
tion becomes much better. Analytic calculation of the risk contributions of obligors has
been studied in Emmer and Tasche (2003) for single-factor cases, and in Tasche (2006)
for multi-factor cases.

Not only analytical approaches as above, but improvements of Monte Carlo simula-
tion have also been considered. In Higo (2006), a credit portfolio is segmented into two
groups, namely a sub-portfolio with large exposures and the other one with the remaining
smaller exposures. Then, the idiosyncratic risks of the smaller exposures are neglected.
Computation time is substantially reduced in this method, because random numbers for
idiosyncratic risks of many smaller exposures need not be generated. Glasserman (2005)
has computed risk contributions obtained as the probability of default conditional on
portfolio losses close to VaR. In this study, importance sampling is found effective to
generate loss scenarios close to VaR.

This paper proposes a numerical algorithm for quantifying credit portfolio risk, based
on the multi-factor Merton model. This algorithm consists of two steps. In the first step,
the MGF of loss distribution is computed. As reported in BCBS (2006), the number of
systematic factors employed in world’s major banks varies from 7 to 110. This implies
that Monte Carlo integration is necessary to obtain the MGF, in conditional independence
models. In a simple implementation of Monte Carlo integration, the computation time of
the MGF is proportional to NI ×N , where NI is the number of sample integration points,
and N is the number of obligors. The first step uses a trick to make this dependence
much milder, so that the MGF can be computed in a much shorter time. In the second
step, we use the numerical Laplace inversion algorithm proposed by de Hoog et al. (1982).
This step is further decomposed into two algorithms. The first algorithm approximates
the Bromwich inversion integral by an infinite series with the trapezoidal rule. However,
this algorithm alone does not work, since the convergence of the resulting infinite series
is extremely slow. Thus, in the second algorithm, the infinite series is converted into
a more rapidly converging sequence, i.e., continued fraction expansion. This idea is an
application of the so-called Padé approximation, which approximates any function by a
rational function. We find that the convergence speed is significantly improved by the
second algorithm.

As mentioned above, importance sampling has been extensively studied recently to
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compute the risk contributions of obligors. However, this method is time-consuming
especially for large portfolios, since they rely on Monte Carlo simulation. In this paper,
we present an efficient numerical algorithm for computing the risk contributions to VaR
and CVaR. A slight modification of the above two steps can be straightforwardly applied
to this computation. By this algorithm, it becomes possible to quantitatively evaluate
name concentration to obligors with large exposures. Furthermore, the risk contributions
of all obligors can be computed in a short time, even for a portfolio with millions of
obligors.

In this paper, a series of algorithms explained in the last two paragraphs is collectively
referred to as the fast numerical approximation. The fast numerical approximation resolves
some drawbacks of analytical methods and Monte Carlo simulation. In fact, some of the
existing analytical methods are based on strong assumptions about credit portfolio (e.g.
mild concentration or strong default correlation), to obtain analytically closed expressions.
On the other hand, this paper does not seek analytically closed forms, but derives final
results through a series of simple algorithms. As a result, the fast numerical approximation
is applicable to a broader range of portfolios. For instance, the accuracy of risk measures
is affected very weakly by the granularity of portfolio, the probability of default, and
the strength of default correlation. Furthermore, all simple algorithms constituting the
fast numerical approximation are highly optimized, so that computation time remains
sufficiently shorter than that of Monte Carlo simulation.

This paper is organized as follows. In section 2, we review Laplace transformation and
the Merton model, and derive some mathematical expressions for portfolio risk measures.
In section 3, we review de Hoog algorithm used as the second step of the fast numerical
approximation. In section 4, we propose a novel numerical algorithm for computing MGF,
which is the first step of the fast numerical approximation. We show numerical examples
in section 5 for some sample portfolios, and show that the fast numerical approximation
works quite well for a wide range of portfolios. The last section is devoted to conclusions.

2 Credit Risk and Laplace Transformation

2.1 Laplace Transformation and Inversion

We begin with the definition of Laplace transformation. Suppose that f(x) is a real-valued
function defined along the positive real axis. Then, the Laplace transform f̂(λ) of f(x) is
defined by

f̂(λ) =

∫ ∞

0

e−λxf(x)dx, (1)
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where λ is a complex-valued auxiliary variable. This relation can be inverted by the
Bromwich integral as 3

f(x) =
1

2πi

∫ γ+i∞

γ−i∞
eλxf̂(λ)dλ, (2)

where the integration path specified by a real number γ must be on the right side of all
singularities of f̂(λ).

If f(x) is the pdf of a random variable X̃, its Laplace transform is identical with the
moment generating function (MGF) of the distribution:

f̂(λ) =

∫ ∞

0

e−λxf(x)dx,

= E
[
exp

(
−λX̃

)]
. (3)

Laplace inversion is quite useful, since in some cases it is much easier to compute MGF
than to compute pdf directly. The Merton model explained in the next subsection is an
example of such cases.

2.2 Multi-factor Merton Model

The Merton model is a well-established framework for quantifying credit portfolio risk
with default correlation among obligors. In this subsection, we review this model for
multi-factor cases.

Let L̃ denote the portfolio loss given by

L̃ =
N∑

i=1

EiD̃i, (4)

where the symbols on the r.h.s. are defined as follows:

• Ei : The exposure of obligor i 4.

• D̃i : The default indicator of obligor i taking the following values:

D̃i =

{
0 if obligor i is not in default,

1 if obligor i is in default.
(5)

• N : The number of obligors.

3In this paper, i represents
√
−1.

4We assume
∑N

i=1 Ei = 1 here without loss of generality. LGD is implicitly assumed to be non-
stochastic, and set to be 100%.
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To describe the obligors’ default and its correlation structure, we assign each obligor a
random variable called firm-value hereafter. The firm-value Z̃i of obligor i is represented
by

Z̃i = αi · X̃ +
√

1 − |αi|2ε̃i, (6)

where the symbols on the r.h.s. are defined as follows:

• X̃ = (X̃1, X̃2, . . . , X̃Nf
) : The systematic risk factors, each of which is a standard

normal random variable.

• Nf : The number of systematic risk factors.

• αi = (αi,1, αi,2, . . . , αi,Nf
) : The loading vector of obligor i with 0 < |αi| < 1.

• ε̃i ∼ N(0, 1) : The idiosyncratic risk factor of obligor i.

In addition, we assume that the random variables X̃j and ε̃i are all independent. Firm-
values (6) then become also standard normal, and dependent of each other through the
systematic factors. In fact, the correlation between obligors i and j takes a non-vanishing
value as

corr
(
Z̃i, Z̃j

)
= αi · αj. (7)

Let us explain in more detail the meaning of the systematic and idiosyncratic risk
factors in (6). The systematic factors X̃j can be viewed as variables that represent macro-
economic conditions and affect the creditworthiness of all obligors simultaneously. As will
be discussed later in section 4.2, the obligors in the same industrial or regional sector
are usually assigned a common loading vector αi. This vector characterizes how the
industry or region is influenced by the macro-economic conditions. On the other hand,
the idiosyncratic factors ε̃i represent conditions unique to each obligor i. This is why they
are assumed to be independent of each other.

In banks’ standard risk management practice, each obligor is assigned a credit rating
and probability of default (PD) is estimated for each rating from empirical default data.
Let PDr be the PD estimate for rating r, and r(i) be obligor i’s rating. In the Merton
model, obligor i defaults if its firm-value falls below the threshold level Ci defined by

Ci ≡ Φ−1(PDr(i)), (8)

where Φ(x) is the standard normal cumulative distribution function, and Φ−1(x) denotes
its inverse function. It is straightforward to verify that the probability of Z̃i being lower
than Ci is PDr(i). The probability of obligor i’s default conditional on X̃ = x is given by

pi(x) ≡ Pr
(
Z̃i < Ci

∣∣∣X̃ = x
)

,

= Φ

(
Ci − αi · x√

1 − |αi|2

)
. (9)

Thus, the conditional PD depends on the systematic factors, reflecting the fact that
macro-economic conditions affect the possibility of an obligor’s default.
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2.3 MGF and pdf in Merton Model

We showed in the last subsection that default correlation can be incorporated by the
systematic factors. Another advantage of the systematic factors is that they enable us to
obtain a nearly analytic expression of MGF. If the systematic factors are fixed, default
occurs independently because the only remaining uncertainty is the idiosyncratic risk. In
the multi-factor Merton model, the MGF conditional on X̃ is thus given by the product
of each obligor’s MGF as

ML(λ; X̃) ≡ E
[
exp

(
−λL̃

) ∣∣ X̃
]
,

=
N∏

i=1

E
[
e−λEiD̃i

∣∣ X̃
]
,

=
N∏

i=1

{
1 − pi(X̃) + pi(X̃)e−λEi

}
. (10)

Taking the expectation value of this conditional MGF yields the unconditional MGF

ML(λ) ≡ E
[
exp

(
−λL̃

)]
,

= E
[
E

[
exp

(
−λL̃

) ∣∣ X̃
]]

,

= E
[
ML(λ; X̃)

]
,

= E

[
N∏

i=1

{
1 − pi(X̃) + pi(X̃)e−λEi

}]
. (11)

As explained before, pdf can be obtained from the corresponding MGF through
Laplace inversion. Hence the pdf fL(l) for portfolio losses is represented by

fL(l) =
1

2πi

∫ γ+i∞

γ−i∞
eλlML(λ)dλ, (12)

=
1

2πi

∫ γ+i∞

γ−i∞
eλlE

[
N∏

i=1

{
1 − pi(X̃) + pi(X̃)e−λEi

}]
dλ. (13)

However, for the purpose of computing quantiles, it is more straightforward to compute
cdf directly instead of pdf. Using the Laplace transformation formula for the integral of
a function, we obtain the cdf as

FL(l) =
1

2πi

∫ γ+i∞

γ−i∞

eλl

λ
ML(λ)dλ, (14)

=
1

2πi

∫ γ+i∞

γ−i∞

eλl

λ
E

[
N∏

i=1

{
1 − pi(X̃) + pi(X̃)e−λEi

}]
dλ. (15)
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Finally, let us mention mathematically subtle issues in (13) and (15). Since the loss can
take only a finite number (= 2N at most) of discrete values in the current model, the pdf
fL(l) does not exist in the strict sense 5 . Or equivalently, the cdf FL(l) is a discontinuous
function. However, as will be explained later, we approximate the Bromwich integral in
(14) by a trigonometric series (see (38) below), and then truncate it into a finite sum. The
cdf FL(l) becomes a continuous and differentiable function through this approximation.

The remaining issue is whether FL(l) is monotonically increasing or not. If not, fL(l)
becomes negative and can not be regarded as pdf. In general, a sum of trigonometric func-
tions can not be monotonic. However, since its convergence is very slow, the trigonometric
series is further converted to a sequence of functions that converges sufficiently fast to the
true cdf. It will be shown later that, for a wide range of portfolios, FL(l) obtained this
way becomes monotonically increasing if relevant parameters are appropriately chosen.

Given the above rationale, we assume from now on that FL(l) is a continuous, differ-
entiable and monotonically increasing function. This assumption makes the arguments in
the next subsection quite simple.

2.4 Risk Measures and Risk Contributions

Consider two familiar portfolio risk measures, i.e., VaR and CVaR defined by

VaR(α) ≡ inf{l|Pr(L̃ ≥ l) ≤ 1 − α}, (16)

CVaR(α) ≡ E
[
L̃

∣∣ L̃ ≥ VaR(α)
]
, (17)

where α is the confidence level. This definition of VaR is equivalent to a more intuitive
one implicitly given by

FL(VaR(α)) = α, (18)

under the assumption that FL(l) is continuous and monotonically increasing. Using the
same assumption and the existence of fL(l), we adopt an alternative definition of CVaR
given by

CVaR(α) =
1

1 − α

∫ ∞

VaR(α)

lfL(l)dl (19)

from now on, instead of (17). These risk measures are computed from the cdf given by
(15), and represent the total risk of a credit portfolio.

Next, we consider how to decompose these total risks into individual transactions. In
this paper, we study the allocation principle simply given by the partial derivative of the
risk measures with respect to the exposure of an obligor 6. Let us start with VaR, and

5It is possible to express fL(l) by a sum of delta functions, but they are of course not ordinary
functions.

6See Tasche (2000) for the properties of this allocation principle concerning the performance measure-
ment of a credit portfolio.
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define the risk contribution of obligor i by

RCi ≡ Ei ·
∂VaR(α)

∂Ei

. (20)

This definition of risk contribution naturally satisfies the additivity

N∑
i=1

RCi = VaR(α), (21)

which follows from Euler’s homogeneous function theorem. In the remainder of this
subsection, we use the notation

FL(Ei, l) = FL(l),

to clarify the dependence of the cdf on exposure Ei. By differentiating

FL(Ei, VaR(α)) = α

with respect to Ei, we obtain

RCi = −Ei ·

∂FL(Ei, VaR(α))

∂Ei

∂FL(Ei, l)

∂l

∣∣∣∣
l=VaR(α)

. (22)

From (15), the numerator in (22) reads

∂FL(Ei, VaR(α))

∂Ei

=
1

2πi

∫ γ+i∞

γ−i∞

eλVaR(α)

λ

∂ML(λ)

∂Ei

dλ, (23)

∂ML(λ)

∂Ei

= −λE
[
pi(λ; X̃)ML(λ; X̃)

]
, (24)

where we have defined twisted conditional PD by

pi(λ;x) ≡ pi(x) exp(−λEi)

1 − pi(x) + pi(x) exp(−λEi)
. (25)

The denominator in (22) is equal to the pdf fL(VaR(α)), which can be computed using
the additivity condition (21).

Let us turn to the risk contributions to CVaR. The obligor i’s risk contribution to
CVaR is defined by

RC
CVaR(α)
i ≡ Ei ·

∂CVaR(α)

∂Ei

. (26)

Similarly to the VaR case, this definition satisfies the additivity condition

N∑
i=1

RC
CVaR(α)
i = CVaR(α). (27)
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To compute (26), we rewrite the definition of CVaR as

CVaR(α) =
1

1 − α

∫ ∞

VaR(α)

lfL(l)dl,

=
1

1 − α

{
EL −

∫ VaR(α)

0

lfL(l)dl

}
,

=
1

1 − α

{
EL − αVaR(α) +

∫ VaR(α)

0

FL(Ei, l)dl

}
,

where EL is the expected loss of the portfolio,

EL =
N∑

i=1

Ei · PDr(i) =

∫ ∞

0

lfL(l)dl.

Hence, we have

∂CVaR(α)

∂Ei

=
1

1 − α

{
PDr(i) − α

∂VaR(α)

∂Ei

+
∂VaR(α)

∂Ei

FL(Ei, VaR(α)) +

∫ VaR(α)

0

∂FL(Ei, l)

∂Ei

dl

}
,

=
1

1 − α

{
PDr(i) +

∫ VaR(α)

0

∂FL(Ei, l)

∂Ei

dl

}
. (28)

From (23), the integral on the r.h.s. reads∫ VaR(α)

0

∂FL(Ei, l)

∂Ei

dl =
1

2πi

∫ γ+i∞

γ−i∞

eλVaR(α)

λ2

∂ML(λ)

∂Ei

dλ. (29)

In summary, the expressions for the risk contributions to VaR and CVaR are given as
follows:

RCi = CEi ·
1

2πi

∫ γ+i∞

γ−i∞

eλVaR(α)

λ

∂ML(λ)

∂Ei

dλ, (30)

RC
CVaR(α)
i = Ei ·

1

1 − α

{
PDr(i) +

1

2πi

∫ γ+i∞

γ−i∞

eλVaR(α)

λ2

∂ML(λ)

∂Ei

dλ

}
, (31)

where constant C is determined to satisfy (21).

Later in this paper, we test the accuracy of the risk contributions numerically com-
puted by (30) and (31). In this test, it is helpful to use alternative expressions given
by

RCi ' RC∆
i ≡ −(1 − α+)RC

CVaR(α+)
i − (1 − α−)RC

CVaR(α−)
i

α+ − α−
, (32)

RC
CVaR(α)
i = Ei · E

[
D̃i

∣∣ L̃ ≥ VaR(α)
]
, (33)
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where ∆ is a constant sufficiently smaller than VaR, and α± is defined by

α± ≡ FL(Ei, VaR(α) ± ∆/2).

The proofs of (32) and (33) are given in appendix A.

3 Numerical Laplace Inversion : the Second Step

As explained in the last section, risk measures and risk contributions can be computed
by Laplace inversion, if the MGF and its partial derivatives are given. In this section, we
assume the MGF to be given already, and review a numerical Laplace inversion algorithm
first studied by de Hoog et al. (1982). This is the second step of the fast numerical
approximation following the first step explained in the next section.

3.1 Review of related works

Application of Laplace inversion to portfolio risk quantification has already been studied
in the literature. The most successful approach would be the saddle-point approximation
and its extensions (Martin et al. (2001) and Martin and Ordovás (2006)). In these
approximations, one finds a saddle-point of the integrand in (12) or (14), and integrates
it along the steepest descent. This method gives a good estimate of the cdf, if the
loss distribution is unimodal. However, the approximation becomes worse for skewed
distributions. For instance, consider the single-factor model studied in Martin et al.
(2001), in which the factor can take only four discrete values. The loss distribution is
a weighted sum of four conditional distributions in this model. If the four conditional
EL depending on the factor are considerably different from each other, the distribution
can have four distinct peaks. Even if the factor is continuous, the distribution can be
highly skewed for a concentrated portfolio with several dominant exposures. Anyway, in
the plain saddle-point method, VaR can be biased for skewed distributions 7.

Numerical Laplace inversion can be used as another approach to the current problem.
Abate et al. (2000) has proposed a Laplace inversion methodology, which consists of two
algorithms. First, the Bromwich integral is approximated by an infinite series using the
trapezoidal rule. Second, the convergence of the infinite series is accelerated by a method
called Euler summation. Glasserman and Ruiz-Mata (2007) has applied this methodology
to the single-factor Merton model. They have shown that the cdf is comparatively accurate
in small loss region, whereas the accuracy worsens in tail region. This is because the
infinite series obtained by the Euler summation is an alternating series, each term of which
has a very large absolute value. A high precision calculation would thus be required to
achieve sufficient accuracy in this methodology.

7To address this, Huang et al. (2007) has studied a method called the adaptive saddle-point approxi-
mation. In this method, obligors are classified into two groups to express the conditional tail probability
as Pr(L̃ > l|X̃) = 1 − Pr(L̃ −

∑
i∈Scon

EiD̃i ≤ l|X̃)
∏

i∈Scon
Pr(D̃i = 0|X̃), where Scon is the group of

obligors i with Ei > l. This gives accurate distributions even in the presence of extremely large exposures.
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In this section, we review an approach due to de Hoog et al. (1982) and Ahn et al.
(2003), who have studied a methodology similar to Abate et al. (2000). We first use the
Poisson algorithm to approximate the Bromwich integral by an infinite series. Second,
in order to accelerate the slow convergence of the infinite series, we use the Quotient-
Difference (QD) algorithm first studied by Rutishauser (1954). The combination of these
algorithms will be referred to as de Hoog algorithm from now on. The numerical examples
presented later will reveal that, in contrast with the Euler summation technique, de Hoog
algorithm is quite efficient in measuring tail probability.

3.2 Infinite Series Expansion : the Poisson Algorithm

The notion of the Poisson algorithm is quite simple. We divide the infinite integration
path in (14) into the small intervals with discretization width h, and evaluate the integral
using the trapezoidal rule. The resulting infinite series reads

F h
L(l) ≡ h

2π

∞∑
k=−∞

exp{(γ + ikh)l}ML(γ + ikh)

γ + ikh
,

=
h

π
exp(γl)

[
ML(γ)

2γ
+

∞∑
k=1

Re

{
ML(γ + ikh)

γ + ikh
exp(ikhl)

}]
,

=
h

π
exp(γl)Re

(
∞∑

k=0

skz
k
l

)
, (34)

where we have defined

s0 ≡
ML(γ)

2γ
, sk ≡ ML(γ + ikh)

γ + ikh
(k = 1, 2, . . .),

zl ≡ exp(ihl). (35)

By truncating this series into a finite sum, we obtain

FL(l) ' F h,Nt

L (l),

≡ h

π
exp(γl)Re

(
2Nt∑
k=0

skz
k
l

)
, (36)

where we have introduced an integer Nt called truncation parameter.

The numerical error e(l) ≡ F h,Nt

L (l) − FL(l) in this approximation is decomposed as
e(l) = ed(l) + et(l), where discretization error ed(l) and truncation error et(l) are defined
by

ed(l) ≡ F h
L(l) − FL(l),

et(l) ≡ F h,Nt

L (l) − F h
L(l).
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Of these errors, the discretization error can easily be adjusted by changing parameters γ
and h. To determine γ and h, an upper bound formula for the discretization error,

|ed(l)| ≤
exp(−2πγ/h)

1 − exp(−2πγ/h)

(
0 ≤ l ≤ 2π

h

)
, (37)

is useful 8. In principle, the truncation error can also be adjusted by the truncation
parameter Nt. However, the convergence of the series (34) is very slow, since sk converges
to zero very slowly as O(k−1). Therefore, Nt must be very large to sufficiently reduce the
truncation error.

This slow convergence is unavoidable as long as we deal with discontinuous distribution
function. To see this, we rewrite (34) as a trigonometric series

F h
L(l) =

h

π
exp(γl)

∞∑
k=0

{ak cos(khl) + bk sin(khl)} , (38)

where real coefficients ak and bk are defined by ak− ibk ≡ sk. Expression (38) implies that
the Poisson algorithm approximates the cdf by a superposition of trigonometric functions
with period 2π/kh. If the cdf is sufficiently smooth, the coefficients ak and bk converge
to zero very fast, since in general a smooth function can be created by summing up
mildly varying functions only. However, if the cdf has discontinuities, highly oscillatory
trigonometric functions are necessary to create the discontinuities. This is the origin of
the very slow convergence of (34), which is resolved in the next subsection.

3.3 Continued Fraction Expansion : the QD Algorithm

In order to improve the convergence speed of an infinite series, convergence acceleration
methods are often used. Continued fraction expansion is presumably the most efficient
acceleration method that is suitable for the current problem. The QD algorithm is used to
convert an infinite series into a continued fraction expansion, which converges drastically
faster than the original series does.

Let us begin with a brief review of continued fraction. A continued fraction is a
quantity of the form

b0 +
a1

b1 +
a2

b2 +
a3

b3 + · · ·

.

8This upper bound is derived from the Poisson resummation formula that justifies the algorithm’s
name. For proof, see Abate et al. (2000).
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The following notations are also used to represent continued fractions:

b0 +
a1

b1 +

a2

b2 +

a3

b3 + · · ·+
an

bn

= b0 +

[
ak

bk

]n

k=1

,

b0 +
a1

b1 +

a2

b2 +

a3

b3 + · · ·
= b0 +

[
ak

bk

]∞

k=1

,

where [ak/bk]
n
k=1 is assumed to be zero if n ≤ 0.

To prepare for the arguments below, we consider a complex valued sequence si that
satisfies the following assumption.

Assumption 1 For all i ≥ 0 and k ≥ 0,

|H(i)
k | 6= 0,

where H
(i)
k is a Hankel matrix

H
(i)
k =


si si+1 · · · si+k−1

si+1 si+2 · · · si+k
...

...
. . .

...
si+k−1 si+k · · · si+2k−2

 , (39)

and |H(i)
k | is its determinant with |H(i)

0 | = 1.

We are now ready to derive a continued fraction representation of an infinite series
from the following three lemmas. Proofs of all lemmas are given in appendix C.

Lemma 1 Let S(z) be a formal power series whose coefficients are given by si, namely

S(z) =
∞∑

k=0

skz
k, (40)

and define a sequence ck by

c0 = s0, c2k−1 = −
|H(0)

k−1||H
(1)
k |

|H(0)
k ||H(1)

k−1|
, c2k = −

|H(0)
k+1||H

(1)
k−1|

|H(0)
k ||H(1)

k |
(k = 1, 2, . . .). (41)

Then, a continued fraction

Cn(z) ≡ c0

/(
1 +

[ckz

1

]n

k=1

)
(42)

is the [bn/2c/b(n + 1)/2c] Padé approximation to S(z) 9 . Or equivalently, Cn(z) is a
rational function whose numerator and denominator are polynomials of degree bn/2c and
b(n + 1)/2c respectively, and satisfies

S(z) − Cn(z) = O(zn+1).

9bxc denotes the floor function, i.e., the largest integer smaller than or equal to x. See appendix B for
the definition of Padé approximation.
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q
(0)
1 → e

(0)
1 q

(0)
2 e

(0)
2 q

(0)
3

↗ ↗ ...

e
(1)
0 → q

(1)
1 e

(1)
1 → q

(1)
2 e

(1)
2

↗ ↗ ...

e
(2)
0 q

(2)
1 → e

(2)
1 q

(2)
2
...

e
(3)
0 q

(3)
1 e

(3)
1
...

e
(4)
0 q

(4)
1

...
...

Table 1: QD algorithm

This lemma enables us to obtain a continued fraction approximating S(z), from Han-
kel determinants. However, it requires much computation time to compute the Hankel
determinants directly. Instead, we use the QD algorithm presented below.

Lemma 2 (QD algorithm) Let e
(i)
k and q

(i)
k be the sequences defined by

e
(i)
0 = 0, q

(i)
1 = si+1/si (i = 0, 1, 2, . . .), (43){

e
(i)
k = e

(i+1)
k−1 + q

(i+1)
k − q

(i)
k

q
(i)
k+1 = q

(i+1)
k e

(i+1)
k /e

(i)
k

(i = 0, 1, 2, . . . ; k = 1, 2, . . .). (44)

Then, they satisfy

e
(i)
k =

|H(i)
k+1||H

(i+1)
k−1 |

|H(i)
k ||H(i+1)

k |
, q

(i)
k =

|H(i)
k−1||H

(i+1)
k |

|H(i)
k ||H(i+1)

k−1 |
(i = 0, 1, 2 . . . ; k = 1, 2, . . .). (45)

Recurrence relation (44) can be understood as a “parallelogram rule” exhibited in Table

1. In this table, initial values si+1/si are assigned to q
(i)
1 , and the remaining sequences are

successively determined from left to upper right. The resultant sequences e
(0)
k and q

(0)
k are

used as the coefficients of the desired continued fraction. Obviously, by this algorithm, ck

can be computed in polynomial time with respect to the dimension of Hankel matrices.
Finally, we can quickly compute the desired continued fraction by the following lemma.

Lemma 3 Let An(z) and Bn(z) be the sequences of polynomials defined by

A−1(z) = 0, A0(z) = c0, B−1(z) = 1, B0(z) = 1, (46){
An+2(z) = An+1(z) + cn+2zAn(z)

Bn+2(z) = Bn+1(z) + cn+2zBn(z)
(n = −1, 0, 1, 2, . . .). (47)
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Figure 1: Convergence behavior of two approximations to π.

Then, An(z) and Bn(z) are polynomials of degree bn/2c and b(n + 1)/2c with Bn(0) = 1,
and satisfy

Cn(z) =
An(z)

Bn(z)
, (48)

where Cn(z) is defined by (42).

Let us consider numerical computation of π to illustrate the performance of continued
fraction expansion. First, we expand tan−1(x) as a Taylor series,

tan−1(x) =
∞∑

k=0

(−1)kx2k+1

2k + 1
,

= x
∞∑

k=0

(−1)k(x2)k

2k + 1
. (49)

Setting si = (−1)i/(2i + 1) in (43), we obtain

e
(i)
k = − 4k2

(2i + 4k − 1)(2i + 4k + 1)
, q

(i)
k = − (2i + 2k − 1)2

(2i + 4k − 3)(2i + 4k − 1)
,

from (44) after a little algebra. Hence, for a small x,

tan−1(x) =
x

1 +
[
{k2/(2k−1)(2k+1)}x2

1

]∞
k=1

(50)

follows from lemma 1 and 2. Let us compare these two expansions using an identity
π = 4 tan−1(1). The convergence behavior shown in Figures 1 and 2 indicates that
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Figure 2: Absolute error of two approximations to π.

continued fraction drastically outperforms Taylor expansion. For instance, truncating
(49) at k = 1, 000, 000 yields

π ' 3.1415936 · · · ,

which is correct only to five decimal places. In contrast, truncating (50) at k = 18, we
obtain

π ' 3.14159265358981 · · · ,

which is correct to twelve decimal places.

For x = 1, the k-th term in Taylor series (49) converges as O(k−1), which is the same
behavior as that of (34). We can thus expect that continued fraction expansion is also
useful in the current portfolio model.

3.4 Summary

In this subsection, we summarize de Hoog algorithm explained in the preceding subsec-
tions. The cdf can be computed by the following four steps 10.

L-1. Computation of infinite series coefficients:

Compute

s0 =
ML(γ)

2γ
, sk =

ML(γ + ikh)

γ + ikh
(k = 1, 2, . . . , 2Nt),

using the algorithm explained in the next section.

10An example of matlab function implementing de Hoog algorithm is given in Hollenbeck (1998).
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L-2. Computation of continued fraction coefficients:

Compute
c0 = s0, c2k−1 = −q

(0)
k , c2k = −e

(0)
k (k = 1, 2, . . . , Nt),

using the QD algorithm

e
(i)
0 = 0, q

(i)
1 = si+1/si (i = 0, 1, 2, . . .),{

e
(i)
k = e

(i+1)
k−1 + q

(i+1)
k − q

(i)
k

q
(i)
k+1 = q

(i+1)
k e

(i+1)
k /e

(i)
k

(i = 0, 1, 2, . . . ; k = 1, 2, . . .).

L-3. Computation of continued fraction:

Let SL be the set of cdf valuation points, i.e., the set of loss levels where we wish to
compute the cdf. Then, for all l ∈ SL, compute

C2Nt(zl) =
A2Nt(zl)

B2Nt(zl)
, zl = exp(ihl),

using the recurrence relation

A−1(z) = 0, A0(z) = c0, B−1(z) = 1, B0(z) = 1,{
An+2(z) = An+1(z) + cn+2zAn(z)

Bn+2(z) = Bn+1(z) + cn+2zBn(z)
(n = −1, 0, 1, . . . , 2Nt − 2).

L-4. Computation of cdf:

Compute

FL(l) ' h

π
exp(γl)Re{C2Nt(zl)},

for all l ∈ SL.

Let us explain here an advantage of de Hoog algorithm concerning computational
speed. As will become clear in the next section, it is very time-consuming to compute
the MGF, particularly for large portfolios with many systematic factors. However, this
computation is necessary only in step L-1. Once the infinite series coefficients are given
in step L-1, we can obtain the whole distribution function very quickly by steps L-3 and
L-4 11.

The risk contributions to VaR and CVaR are computed by repeating the following
four steps for all obligors i. We assume that VaR has already been computed from the
cdf obtained by step L-4.

11In contrast, the Euler summation technique in Abate et al. (2000) requires re-calculation of the MGF
for each loss level l.
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L-5. Computation of infinite series coefficients:

Choose an obligor i and compute
si
0 =

1

2γ

∂ML(γ)

∂Ei

, si
k =

1

γ + ikh

∂ML(γ + ikh)

∂Ei

(for VaR),

si
0 =

1

2γ2

∂ML(γ)

∂Ei

, si
k =

1

(γ + ikh)2

∂ML(γ + ikh)

∂Ei

(for CVaR),

for k = 1, 2, . . . , 2Nt, where ∂ML(λ)/∂Ei is computed by the algorithm explained
in the next section.

L-6. Computation of continued fraction coefficients:

Compute
ci
0 = si

0, ci
2k−1 = −q

(0)
k , ci

2k = −e
(0)
k (k = 1, 2, . . . , Nt),

using the QD algorithm

e
(j)
0 = 0, q

(j)
1 = si

j+1/s
i
j (j = 0, 1, 2, . . .),{

e
(j)
k = e

(j+1)
k−1 + q

(j+1)
k − q

(j)
k

q
(j)
k+1 = q

(j+1)
k e

(j+1)
k /e

(j)
k

(j = 0, 1, 2, . . . ; k = 1, 2, . . .).

L-7. Computation of continued fraction:

Compute

Ci
2Nt

(z) =
A2Nt(z)

B2Nt(z)
, z = exp(ihVaR(α)),

using the recurrence relation

A−1(z) = 0, A0(z) = ci
0, B−1(z) = 1, B0(z) = 1,{

An+2(z) = An+1(z) + ci
n+2zAn(z)

Bn+2(z) = Bn+1(z) + ci
n+2zBn(z)

(n = −1, 0, 1, . . . , 2Nt − 2).

L-8. Computation of risk contributions:

Compute

RCi ' CEi ·
h

π
exp(γVaR(α))Re{Ci

2Nt
(z)},

RC
CVaR(α)
i ' Ei ·

1

1 − α

[
PDr(i) +

h

π
exp(γVaR(α))Re{Ci

2Nt
(z)}

]
,

where C is determined to satisfy
∑N

i=1 RCi = VaR(α).
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4 Computation of MGF : the First Step

4.1 Generalities on Numerical Integration

Since the expectation values required to obtain the MGF can not be analytically calcu-
lated, they must be computed by numerical integration. In this subsection, we briefly
review the idea of numerical integration methods. Most of the well-known numerical
integration algorithms take the form of∫

x∈I

g(x)dx '
NI∑
k=1

wkg(xk), (51)

where we have introduced the notations as

• I : D-dimensional integration domain.

• xk : Integration points in I.

• wk : Integration weights associated with xk.

• NI : The number of the integration points.

Approximation (51) implies that numerical integration can be considered as a procedure
for appropriately determining (wk,xk).

In general, computational accuracy depends on the form of the integrand g(x), even if
the same (wk,xk) is used. It is important to choose appropriate integration methods suit-
able for the integrand. For instance, suppose that g(x) is of the form g(x) = h(x)φD(x),
where h(x) is an arbitrary function and φD(x) is the D-dimensional standard normal pdf.
Then, we have the following choices.

Gauss-Hermite quadrature

If D = 1, the Gauss-Hermite quadrature can be used to determine xk and wk.

Good Lattice Points

For D = 2, 3, 4, good lattice points can be used as xk.

Monte Carlo integration

For multi-dimensional cases with D & 4, Monte Carlo integration is presum-
ably the most efficient algorithm. In Monte Carlo integration, standard normal
random numbers are used as xk, and (51) is computed by replacing g(xk) on
the r.h.s. with h(xk), and setting wk = 1/NI .

Note that the expectation values in (15) and (24) are integrations with respect to
standard normal systematic factors, and hence we can use one of the above methods
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depending on Nf . However, an appropriate choice of integration methods is not sufficient
for the current problem, in particular for large portfolios. In these cases, we have to
consider how to reduce the computation time of the integrand at a single integration
point. This is the main issue discussed in the following subsections.

4.2 Merton Model Revisited

First, let us consider how to estimate loading vectors αi used in the multi-factor Merton
model. In principle, the loading vector of obligors can be different from each other. This
means that pairwise correlations can be different among all possible pairs of obligors.
However, the data needed to estimate the correlations are limited, especially for private
firms for which we can not observe their market stock values. Moreover, even if the
pairwise correlations could be appropriately estimated, it would be difficult to generate
random firm-values with pairwise correlations for a large portfolio.

A standard practice in banks is to decompose a portfolio into industrial or regional
sectors, and assume the loading vectors to depend only on the sectors, not on individual
obligors. For instance, one first estimates the correlations among stock market sector
indices, which are mapped somehow to the sectors internally used in a bank. Then,
the loading vectors are determined so that they reproduce the estimated correlations
among the indices. This practical assumption is a key to a drastically fast algorithm for
computing MGF.

This standard practice is described as follows. Let αS be the loading vector for sector
S, and rewrite αi as

αi = αS(i), (52)

where S(i) is the sector to which obligor i belongs. Then, the firm-value reads

Z̃i = βS(i)Ỹ
S(i) +

√
1 − β2

S(i)ε̃i, (53)

where we have defined loading scalar βS, sectoral factor Ỹ S and unit loading vector eS by

βS ≡
∣∣αS

∣∣,
Ỹ S ≡ eS · X̃,

eS ≡ αS/
∣∣αS

∣∣. (54)

It is important that Ỹ S(i) is uniquely determined by obligor i’s sector 12. This means
that a sub-portfolio consisting only of the obligors in a specific sector is described by the
single-factor Merton model.

12The practical assumption here can be relaxed by allowing the norm of αi to depend on i. Then,
we have αi = |βi|eS(i) and Z̃i = βiỸ

S(i) +
√

1 − β2
i ε̃i. Even under this relaxed condition, the fast

computation idea explained in the next subsection works.
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Given this reformulation, we decompose L̃ into the sum of the losses L̃S arising from
sector S as

L̃ =

NS∑
S=1

L̃S, (55)

where NS is the number of sectors 13. Then, the conditional MGF for L̃S is given by

MLS
(λ;x) =

∏
i s.t. S(i)=S

{
1 − pi(x) + pi(x)e−λEi

}
, (56)

which we refer to as sector MGF below. By multiplying MLS
(λ;x) for all sectors, we

obtain the total conditional MGF as

ML(λ;x) =

NS∏
S=1

MLS
(λ;x). (57)

If numerical integration weights and points (wk,xk) are given, an approximation to the
unconditional MGF

ML(λ) '
NI∑
k=1

wkML(λ;xk),

=

NI∑
k=1

wk

NS∏
S=1

MLS
(λ;xk) (58)

is derived from (11). Here, note that sector MGF MLS
(λ;xk) depends only on a scalar

eS · xk, i.e., the projection of xk on axis eS. It is thus convenient to define

M ′
LS

(λ; y) ≡
∏

i s.t. S(i)=S

{
1 − p′i(y) + p′i(y)e−λEi

}
, (59)

where a new function denoting conditional PD is defined by

p′i(y) ≡ Pr
(
Z̃i < Ci

∣∣∣Ỹ S(i) = y
)

,

= Φ

Ci − βS(i)y√
1 − β2

S(i)

 .

Using (59), we obtain

ML(λ) '
NI∑
k=1

wk

NS∏
S=1

M ′
LS

(λ; eS · xk). (60)

The above argument is just an algebraic manipulation, and does not improve com-
putational speed at all. However, a further approximation applied to (60) significantly
reduces computation time. This will be discussed in the next subsection.

13From now on, we assume NS ≥ Nf without loss of generality.
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4.3 Idea of Fast Computation

Suppose that there exist Nf & 4 systematic factors, which require Monte Carlo integration
according to the criteria given in subsection 4.1. To compute the MGF in this case, at
least NI ∼ 106 integration points are necessary to sufficiently reduce the statistical error
due to Monte Carlo integration. Accordingly, every sector MGF must be computed at
least 1 million times if we naively use expression (60). This lengthy computation can be
avoided by noting the following two points. First, a bank’s portfolio consists of single
factor sub-portfolios under the practical assumption of the last subsection. Second, it has
been empirically found that NI ∼ 100 integration points are sufficient to obtain sufficiently
accurate loss distribution for a single factor portfolio. These two points have led us to
find an algorithm explained below.

The main idea of fast computation is discretization of sectoral factors. First, we put
a finite number of points on the real axis as

G ≡ {g1, g2, . . . , gNg} (g1 < g2 < · · · < gNg). (61)

We refer to gm and Ng as discretized valuation point and discretization parameter, respec-
tively. Next, we define

M
(m)
LS

(λ) ≡ M ′
LS

(λ; gm), (62)

which represents the sector MGF valuated at discretized valuation point gm. Then, our
final approximation is given by

ML(λ) '
NI∑
k=1

wk

NS∏
S=1

M ′
LS

(λ; eS · xk),

'
NI∑
k=1

wk

NS∏
S=1

M
(mS

k )

LS
(λ), (63)

where an integer mS
k specifies a discretized valuation point gmS

k
close to eS ·xk. The result

(63) gives a good approximation to (60), provided that Ng ∼ 100 and discretized valuation
points are appropriately chosen. This is because M ′

LS
(λ; y) is a continuous function of

y, and Ỹ S = eS · X̃ has a very small probability of taking large absolute values. In this
paper, we adopt the following simple setup:

• G : A set of points equally separated in the interval [−5, 5],

i.e., {gm = −5 + 10(m − 1)/(Ng − 1) | m = 1, 2, . . . , Ng}.

• mS
k : An integer m minimizing

∣∣gm − eS · xk

∣∣.
Let us compare two expressions (60) and (63), focusing on their computational speed.

The overall computational complexity of (60) is O(NtNIN) 14. It is thus unrealistic

14Recall that ML(λ) must be computed for 2Nt + 1 different values of λ in step L-1 of subsection 3.4.
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to simply use (60) in large banks employing Nf & 4 systematic factors. However, this

problem is resolved in (63). Note that M
(m)
LS

(λ) does not depend on integration points,
and can be computed only from a set of discretized valuation points G. This allows us to
compute M

(m)
LS

(λ) before generating xk and store the results in RAM. When we compute
(63), we just find an appropriate mS

k for each index k and sector S, read the corresponding

values of M
(mS

k )

LS
(λ) from RAM, and multiply them for all sectors. Since at most NS ∼ 100

as mentioned in Introduction, this can be done in a relatively short time. In summary,
the computational complexity has been reduced to O(Nt(NgN + NINS)) in (63), where
NgN and NINS correspond to the loops for computing the sector MGF and total MGF,
respectively. Given the typical values of Ng, N,NI , and NS presented above, it is obvious
that this complexity reduction dramatically reduces computation time.

Furthermore, approximation (63) outperforms Monte Carlo simulation with NI loss
scenarios in its computational accuracy. The NI integration points in (63) are in one-to-
one correspondence with conditional cdf, which are summed up to obtain the total cdf. On
the other hand, Monte Carlo simulation generates loss scenarios, which are in one-to-one
correspondence with points in the total cdf. Therefore, the risk measures computed by
(63) are obviously more accurate than those obtained by Monte Carlo simulation with NI

loss scenarios.

4.4 Application to Risk Contributions

In this subsection, we apply the fast numerical algorithm presented in the last subsection
to the computation of risk contributions. In order to compute risk contributions, we have
to compute ∂ML(λ)/∂Ei used in (30) and (31). A naive numerical integration of (24)
reads

∂ML(λ)

∂Ei

' −λ

NI∑
k=1

wkpi(λ;xk)ML(λ;xk),

= −λ

NI∑
k=1

wkpi(λ;xk)

NS∏
S=1

M ′
LS

(λ; eS · xk),

' −λ

NI∑
k=1

wkpi(λ;xk)

NS∏
S=1

M
(mS

k )

LS
(λ). (64)

However, even if we could temporarily store the value of
∏NS

S=1 M
(mS

k )

LS
(λ) in RAM after

computing the MGF by (63), it would still require an overall complexity O(NtNIN) to
compute (64) for all obligors. It is thus impractical to use (64) for a large portfolio with
many systematic factors.

To obtain an expression more suitable for numerical computation, we return to (24)
and rewrite it as

∂ML(λ)

∂Ei

= −λ

Ng∑
m=1

E
[
pi(λ; X̃)ML(λ; X̃)1eS(i)·X̃∈Im

]
, (65)
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where Im is the interval containing gm defined by

Im ≡


(−∞, (g1 + g2)/2] (m = 1),

((gm−1 + gm)/2, (gm + gm+1)/2] (m = 2, 3, . . . , Ng − 1),

((gNg−1 + gNg)/2,∞) (m = Ng).

Note that eS · xk ∈ Im is equivalent to mS
k = m. To evaluate (65), it is convenient to

define

p′i(λ; y) ≡ p′i(y) exp(−λEi)

1 − p′i(y) + p′i(y) exp(−λEi)
, (66)

since pi(λ; X̃) depends only on a scalar eS(i)·X̃. Then, we can approximate the expectation
value in (65) using discretized valuation points by

E
[
pi(λ; X̃)ML(λ; X̃)1eS(i)·X̃∈Im

]
' p′i(λ; gm)E

[
ML(λ; X̃)1eS(i)·X̃∈Im

]
. (67)

Using integration points xk, the expectation value on the r.h.s. of (67) can be further
approximated as

E
[
ML(λ; X̃)1eS(i)·X̃∈Im

]
'

NI∑
k=1

wk1eS(i)·xk∈Im

NS∏
S=1

MLS
(λ;xk),

=
∑

k∈K
S(i)
m

wk

NS∏
S=1

M ′
LS

(λ; eS · xk),

'
∑

k∈K
S(i)
m

wk

NS∏
S=1

M
(mS

k )

LS
(λ), (68)

where we have defined a subset KS
m of the integration point index by

KS
m ≡ {k|k = 1, 2, . . . , NI ,m

S
k = m}.

Combining (67) and (68) with (65), we finally obtain

∂ML(λ)

∂Ei

' −λ

Ng∑
m=1

p
(m)
i (λ)P S(i)

m (λ), (69)

where we have defined

p
(m)
i (λ) ≡ p′i(λ; gm)

P S
m(λ) ≡

∑
k∈KS

m

wk

NS∏
S′=1

M
(mS′

k )

LS′ (λ). (70)

Expression (69) is superior to (64) for the following reason. First, note that a factor∏NS

S=1 M
(mS

k )

LS
(λ) appears in (63) and (70) in common, as mentioned previously. Therefore,
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it requires only a complexity O(NtNINS) to compute P S
m(λ) and store the results in

RAM, if this computation is done in parallel with (63). When we finally compute (69),
the value of P S

m(λ) is read from RAM. This computation requires a complexity O(NtNgN).
In summary, the overall complexity has been reduced to O(Nt(NINS + NgN)) in (69),
where NINS and NgN correspond to the loops for computing P S

m(λ) and ∂ML(λ)/∂Ei,
respectively.

In principle, the above algorithm is sufficient to compute risk contributions via (30) and
(31). However, (31) often gives inaccurate results because of the error due to numerical
integration. This can be remedied by rewriting PDr(i) as

PDr(i) = E
[
p′i(eS(i) · X̃)

]
=

Ng∑
m=1

E
[
p′i(eS(i) · X̃)1eS(i)·X̃∈Im

]
'

Ng∑
m=1

p′i(gm)E
[
1eS(i)·X̃∈Im

]
'

Ng∑
m=1

p′i(gm)

(
NI∑
k=1

wk1eS(i)·xk∈Im

)

=

Ng∑
m=1

p′i(gm)

 ∑
k∈K

S(i)
m

wk

 . (71)

Replacing PDr(i) in (31) with its approximated version (71), we can “cancel out” the
numerical error contained in (71) and ∂ML(λ)/∂Ei. This trick improves to a considerable
degree the accuracy of the risk contributions to CVaR.

As mentioned in Introduction, it is helpful for portfolio management if we can know
how the total risk of a portfolio is increased (or decreased) by individual transactions. This
can be done instantaneously by applying the above algorithm, if we restrict ourselves to
the case where the exposure of only one obligor changes. Suppose that the exposure of a
specific obligor i changes as Ei → Enew

i . It is a straightforward exercise to verify that the
approximated MGF (63) then changes as

ML(λ) → Mnew
L (λ) '

Ng∑
m=1

q
(m)
i (λ)P S(i)

m (λ), (72)

where q
(m)
i (λ) is defined by

q
(m)
i (λ) ≡ 1 − p′i(gm) + p′i(gm) exp(−λEnew

i )

1 − p′i(gm) + p′i(gm) exp(−λEi)
. (73)

Expression (72) can be computed instantaneously, if a program code is implemented so
that the value of P S

m(λ) remains in RAM after the first risk measurement is finished 15.
15This algorithm can easily be extended to the case where the rating of only one obligor changes.
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In addition, it is possible to calculate higher order derivatives of ML(λ) with respect

to Ei, using (73) as follows. Let us regard q
(m)
i (λ) as a function of Enew

i , and write down
its Taylor expansion around Ei as

q
(m)
i (λ) = 1 +

∞∑
n=1

1

n!
(−λ)np

(m)
i (λ)(Enew

i − Ei)
n,

where we have used

∂nq
(m)
i (λ)

(∂Enew
i )n

∣∣∣∣∣
Enew

i =Ei

=
(−λ)np′i(gm) exp(−λEi)

1 − p′i(gm) + p′i(gm) exp(−λEi)
= (−λ)np

(m)
i (λ).

Then, from (72) we have

∂nML(λ)

∂En
i

' (−λ)n

Ng∑
m=1

p
(m)
i (λ)P S(i)

m (λ). (74)

This can be used to compute higher order derivatives of VaR and CVaR along the same
lines as subsection 2.4. In particular, the second order derivative is analogous to “Gamma
risk”, which is familiar in market risk. Finite difference (72) and its infinitesimal version
(74) give valuable information about the sensitivity of credit portfolio risk to individual
transactions.

4.5 Summary

In this subsection, we summarize the algorithm for computing MGF and its partial deriva-
tive with respect to exposures. The MGF can be computed by the following two steps.

M-1. Computation of sector MGF:

Compute

M
(m)
LS

(λ) =
∏

i s.t. S(i)=S

{
1 − p′i(gm) + p′i(gm)e−λEi

}
,

for S = 1, 2, . . . , NS and m = 1, 2, . . . , Ng.

M-2. Computation of P S
m(λ) and MGF:

Set P S
m(λ) = 0 for all S = 1, 2, . . . , NS,m = 1, 2, . . . , Ng, and ML(λ) = 0. Then,

repeat (a) and (b) given below for k = 1, 2, . . . , NI , to finally obtain 16

P S
m(λ) =

∑
k∈KS

m

wk

NS∏
S′=1

M
(mS′

k )

LS′ (λ) (S = 1, 2, . . . , NS,m = 1, 2, . . . , Ng),

ML(λ) '
NI∑
k=1

wk

NS∏
S=1

M
(mS

k )

LS
(λ).

16If there is no need to compute risk contributions, computation of PS
m(λ) can be omitted.
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(a) Compute
∏NS

S=1 M
(mS

k )

LS
(λ), using M

(m)
LS

(λ) obtained in step M-1.

(b) Add wk

∏NS

S=1 M
(mS

k )

LS
(λ) to P S

mS
k
(λ) for all S = 1, 2, . . . , NS, and to ML(λ).

The partial derivative of MGF with respect to Ei can be computed by the following two
steps.

M-3. Computation of twisted conditional PD:

Compute

p
(m)
i (λ) =

p′i(gm) exp(−λEi)

1 − p′i(gm) + p′i(gm) exp(−λEi)
,

for m = 1, 2, . . . , Ng.

M-4. Computation of ∂ML(λ)/∂Ei:

Using P S
m(λ) obtained in step M-2, compute

∂ML(λ)

∂Ei

' −λ

Ng∑
m=1

p
(m)
i (λ)P S(i)

m (λ).

Needless to say, various elementary coding techniques must be used in order for the above
steps to work effectively. For instance, the data used many times in a loop (e.g. e−λEi in
step M-1) must be computed outside the loop. If this and other techniques are completely
implemented, computation time eventually comes to be dominated by memory accessing,
not by computation itself.

It should also be pointed out that this algorithm significantly saves memory space. For
instance, the sizes of memory space required to temporarily store the value of M

(m)
LS

(λ),
ML(λ), and P S

m(λ) in steps M-1 and M-2 are respectively proportional to NgNS, Nt, and
NtNgNS. Remarkably, these numbers do not depend on N and NI . Thus, this algo-
rithm can handle a large portfolio with many systematic factors by an ordinary personal
computer.

5 Numerical Examples

In this section, we examine the performance of the fast numerical approximation (FNA)
explained in the preceding sections, for some sample portfolios 17.

17All measurement results including computation time in this section are obtained by a parallel pro-
gram, which is written in C++ using OpenMP and compiled by Intel R© C++ Compiler for Windows.
We use a personal computer with Windows 2000 OS, Intel R© CoreTM2 Duo CPU 2.66 GHz, and 3.12 GB
RAM.
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Portfolio N Exposure Ei Rating r(i) Loading scalar βS

D1 1,000 Ei = 1/N Random 0.5
D2 10,000 Ei = 1/N Random 0.5
D3 1,000,000 Ei = 1/N Random 0.5
C1 1,000 Ei = c/i Random 0.5
C2 10,000 Ei = c/i Random 0.5

C2-(a) 10,000 Ei = c/i r(i) = 4 (PD = 0.1%) 0.5
C2-(b) 10,000 Ei = c/i Random 0.1
C2-(c) 10,000 Ei = c/i Random 0.9

C3 1,000,000 Ei = c/i Random 0.5

Table 2: Nine sample portfolios. Constant c is determined so that
∑N

i=1 Ei = 1.

r 1 2 3 4 5 6 7 8 9 10

PDr 0.01% 0.03% 0.05% 0.1% 0.12% 0.15% 0.2% 0.25% 0.3% 0.4%

r 11 12 13 14 15 16 17 18 19

PDr 0.5% 0.65% 0.8% 1.0% 1.2% 1.4% 1.75% 3.5% 10.0%

Table 3: PD for 19 ratings

5.1 Sample Portfolios and Parameters

We consider nine sample portfolios, as shown in Table 2. The exposure distribution
indicates that portfolios D1 to D3 are completely diversified, whereas all other portfolios
are severely concentrated according to a power law distribution. We consider a rating
system with 19 ratings, and assume their PD to be given by Table 3. In all portfolios
except C2-(a), the rating r(i) of obligor i is chosen randomly with Pr(r(i) = k) = 1/19
for all k (= 1, 2, . . . , 19) 18. The number of systematic factors and sectors are both set as
Nf = NS = 33, which is the number of TOPIX sector indices. Unit loading vectors eS

are determined so that the correlation matrix

corr(Ỹ S, Ỹ S′
) = eS · eS′ (75)

is equal to that estimated from 33 TOPIX sector indices 19. Similarly to the random
rating allocation explained above, the sector S(i) of obligor i is chosen randomly with
Pr(S(i) = k) = 1/33 for all k (= 1, 2, . . . , 33). The value of loading scalar βS is identical
throughout the 33 sectors, in all sample portfolios.

We refer to all other parameters as algorithm parameters, which determine the perfor-
mance of the fast numerical approximation but do not affect the risk profile of portfolios.
These algorithm parameters are listed in Table 4. First, let us explain how to determine

18The rating of the largest exposure in portfolio C2 is intentionally set to be r(1) = 13, namely
PD = 0.8%.

19We use monthly data of TOPIX sector indices from 2002 to 2007.
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Algorithm Parameters

Real part of Bromwich integration path γ = − ln 10−14

4lmax

Discretization width h =
π

2lmax

Truncation parameter Nt = 100
Discretization parameter Ng = 128
Number of integration points NI = 2.5 × 106

Set of cdf valuation points SL =

{
k

1000
lmax

∣∣ k = 1, 2, . . . , 1000

}
Table 4: Basic setting of the algorithm parameters

γ and h. Recall the upper bound formula (37) for the discretization error ed(l). If γ and
h are chosen as in Table 4, ed(l) satisfies

|ed(l)| . 10−14 (0 ≤ l ≤ 4lmax), (76)

where lmax is the maximum loss level where the cdf is computed. Therefore, the dis-
cretization error is sufficiently small in SL, if SL is defined as in Table 4 20. Next, we
have to determine lmax. If lmax is too small, we can not compute quantiles larger than
lmax. Conversely, if lmax is too large, the numerical approximation worsens because the
cdf valuation points in SL become sparse. To avoid these problems, we set lmax to be 1.1
times the 99.9999% VaR computed in advance using a parameter setting

Nt = 25, Ng = 32, NI = 1 × 105, lmax =
N∑

i=1

Ei = 1. (77)

This preliminary computation can be done in a relatively short time. By setting lmax in
this way, we can compute VaR at confidence levels lower than 99.9999%.

The remaining algorithm parameters are set as follows. Since Nf is very large, we
adopt Monte Carlo integration to compute the expectation values over systematic factors.
We use NI = 2.5 × 106 integration points xk generated by standard normal random
numbers. For most of the analyses given below, the seed of these random numbers is
fixed at a specific value. However, Monte Carlo integration involves statistical error.
This statistical error is evaluated for portfolios C2, C2-(b) and C2-(c), by comparing risk
measures computed by different seeds. The truncation and discretization parameters are
set as Nt = 100 and Ng = 128. We mainly use the algorithm parameters given by Table
4 in the following examples, unless otherwise stated.

20Although |ed(l)| . 10−14 is satisfied also in [lmax, 4lmax], we restrict SL to the interval [0, lmax], since
the authors have empirically observed that the truncation error et(l) increases for l ∼ 4lmax.
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5.2 Risk Measures and Tail Probability

In this subsection, we examine the performance of the fast numerical approximation by
computing risk measures for the nine sample portfolios. Tail loss probabilities are also
exhibited to show that the fast numerical approximation works quite well for a wide
range of loss levels. All Monte Carlo simulations used as benchmarks in this subsection
are performed with 10 million loss scenarios.

We first present VaR and CVaR measurement results obtained by the fast numerical
approximation and Monte Carlo simulation in Table 5. Most of the relative errors are
smaller than 1%. However, for portfolio C2-(a), the 99.9% VaR of the fast numerical
approximation is 0.102, larger than that of Monte Carlo simulation by more than 10%.
Which result is correct? To answer this question, note that all obligors have PD=0.1% in
this portfolio. Therefore, 99.9% VaR can not be less than the largest exposure E1 ' 0.10.
This indicates that the result of the fast numerical approximation is closer to the true
value. We will come back to this point soon later.

In Figures 3-5, we depict the tail loss probabilities of diversified portfolios D1 to
D3. The two methods are almost indistinguishable for loss levels smaller than the 99.99
percentile point. The reason for the discrepancy in far tail region is explained as follows. In
a well diversified portfolio, portfolio loss is almost uniquely determined by the systematic
factors, due to the law of large numbers. This means that the loss can approximately
take only NI discrete values, in the fast numerical approximation with NI integration
points. Therefore, loss distribution becomes very sparse in far tail region. To obtain more
accurate tail probability, we only have to increase NI . As an example, we compute the tail
probability of portfolio D3 for NI = 2.5 × 107 case with all other algorithm parameters
unchanged. Figure 5 shows that the accuracy of the fast numerical approximation is
improved, as expected.

The tail loss probabilities of concentrated portfolios C1, C2, C3, and C2-(a) are shown
in Figures 6-9. The two methods are almost indistinguishable everywhere, in contrast with
diversified portfolios. It is remarkable that the graph of C2 has a small flat region near
the tail probability ∼ 1%. In other words, the loss has a very small probability of taking
values slightly lower than 0.1. This is due to the largest exposure with E1 ' 0.10 and
PD=0.8%. In general, it is difficult to accurately compute quantiles near such region.
However, as we have already seen in Table 5, the 99% VaR obtained by the fast numerical
approximation is sufficiently accurate. The tail probability of portfolio C2-(a) is highly
skewed, since all obligors have PD=0.1% in this portfolio. In particular, there exists a
wide stationary region near 99.9% VaR due to the largest exposure. This is the reason
why 99.9% VaR is underestimated by Monte Carlo simulation due to statistical error.

We stress that most of the tail probabilities are monotonically decreasing in the fast
numerical approximation. This means that the trigonometric series (38) can be sufficiently
smoothed by the QD algorithm. However, the tail probabilities of portfolios D3 with
NI = 2.5 × 106 and C2-(a) are not monotonic. In portfolio D3, the tail probability
slightly oscillates in far tail region, whereas in portfolio C2-(a) the tail probability is

31



slightly increasing near 99.9% VaR. In principle, non-monotonicity can be suppressed
by increasing Nt in general cases, or increasing NI especially for diversified portfolios.
However, the non-monotonicity in the present cases causes no serious problem in practice,
since it is almost invisible as the figure indicates.

Next, we compute risk measures obtained by ten different seeds of numerical integra-
tion, for portfolios C2, C2-(b) and C2-(c). The results are summarized in Tables 6-8. It
is found that the statistical errors increase as βS increases. This is because the system-
atic risk arising from the uncertainty of systematic factors is roughly proportional to βS.
However, the statistical errors are smaller than 1%, even for the strong correlation case
βS = 0.9.

The stability of the fast numerical approximation under the change of Nt and Ng is
examined as follows. Table 9 presents the risk measurement results for various Nt, with all
other algorithm parameters set as in Table 4. We regard Nt = 200 cases as benchmarks,
and compute the relative errors of Nt = 50 and Nt = 100 cases. All relative errors are
smaller than 1%, indicating that continued fraction expansion is suficiently convergent.
Table 10 presents the risk measurement results for various Ng, with all other algorithm
parameters set as in Table 4. Similarly to Table 9, Ng = 64 and Ng = 128 cases are
compared with Ng = 256 cases as benchmarks. All relative errors are smaller than 1%
again, indicating that discretized valuation points are appropriately chosen.
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Figure 3: Tail loss probability of portfolio D1.
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Figure 4: Tail loss probability of portfolio D2.
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Figure 5: Tail loss probability of portfolio D3.
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Figure 6: Tail loss probability of portfolio C1.
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Figure 7: Tail loss probability of portfolio C2. A small flat region near 99% VaR is due
to the largest exposure with E1 ' 0.10 and PD=0.8%.
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Figure 8: Tail loss probability of portfolio C3.
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Figure 9: Tail loss probability of portfolio C2-(a). A flat region near 99.9% VaR is due to
the largest exposure with E1 ' 0.10.

VaR CVaR

Measurement # 99% 99.9% 99.97% 99% 99.9% 99.97%

1 0.0563 0.1245 0.1317 0.1042 0.1308 0.1388
2 0.0563 0.1245 0.1317 0.1042 0.1308 0.1388
3 0.0563 0.1245 0.1317 0.1042 0.1308 0.1388
4 0.0563 0.1245 0.1317 0.1042 0.1308 0.1388
5 0.0563 0.1245 0.1317 0.1042 0.1308 0.1388
6 0.0563 0.1245 0.1317 0.1042 0.1308 0.1388
7 0.0563 0.1245 0.1317 0.1042 0.1308 0.1388
8 0.0563 0.1245 0.1316 0.1042 0.1308 0.1388
9 0.0563 0.1245 0.1317 0.1042 0.1308 0.1388
10 0.0563 0.1245 0.1317 0.1042 0.1308 0.1388

Mean 0.0563 0.1245 0.1317 0.1042 0.1308 0.1388
StDev 1.775E-6 4.393E-6 7.148E-6 2.185E-6 2.151E-6 4.875E-6

StDev/Mean 0.003% 0.004% 0.005% 0.002% 0.002% 0.004%

Table 6: Risk measurement results of the fast numerical approximation for portfolio C2-
(b) with βS = 0.1, obtained by ten different seeds of numerical integration.
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VaR CVaR

Measurement # 99% 99.9% 99.97% 99% 99.9% 99.97%

1 0.0802 0.1478 0.1691 0.1198 0.1656 0.1871
2 0.0804 0.1479 0.1693 0.1199 0.1658 0.1875
3 0.0806 0.1481 0.1696 0.1200 0.1661 0.1881
4 0.0807 0.1480 0.1694 0.1201 0.1659 0.1877
5 0.0804 0.1479 0.1692 0.1199 0.1657 0.1874
6 0.0805 0.1480 0.1694 0.1201 0.1660 0.1879
7 0.0806 0.1480 0.1694 0.1201 0.1659 0.1878
8 0.0807 0.1480 0.1696 0.1201 0.1660 0.1879
9 0.0805 0.1479 0.1694 0.1200 0.1659 0.1879
10 0.0806 0.1480 0.1695 0.1201 0.1661 0.1881

Mean 0.0805 0.1480 0.1694 0.1200 0.1659 0.1877
StDev 0.0001 0.0001 0.0002 0.0001 0.0002 0.0003

StDev/Mean 0.17% 0.05% 0.09% 0.07% 0.10% 0.17%

Table 7: Risk measurement results of the fast numerical approximation for portfolio C2
with βS = 0.5, obtained by ten different seeds of numerical integration.

VaR CVaR

Measurement # 99% 99.9% 99.97% 99% 99.9% 99.97%

1 0.1441 0.2869 0.3694 0.2054 0.3547 0.4360
2 0.1441 0.2869 0.3673 0.2055 0.3537 0.4354
3 0.1445 0.2886 0.3716 0.2064 0.3575 0.4410
4 0.1440 0.2874 0.3709 0.2056 0.3559 0.4379
5 0.1441 0.2895 0.3750 0.2063 0.3589 0.4406
6 0.1441 0.2864 0.3678 0.2052 0.3528 0.4320
7 0.1441 0.2866 0.3685 0.2052 0.3548 0.4372
8 0.1441 0.2882 0.3719 0.2057 0.3566 0.4383
9 0.1442 0.2879 0.3707 0.2058 0.3556 0.4368
10 0.1443 0.2849 0.3661 0.2050 0.3522 0.4339

Mean 0.1442 0.2873 0.3699 0.2056 0.3553 0.4369
StDev 0.0001 0.0013 0.0026 0.0004 0.0021 0.0028

StDev/Mean 0.10% 0.45% 0.71% 0.22% 0.59% 0.63%

Table 8: Risk measurement results of the fast numerical approximation for portfolio C2-(c)
with βS = 0.9, obtained by ten different seeds of numerical integration.
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Portfolio N Nt = 50 Nt = 100

C1 1,000 20sec 40sec
C2 10,000 21sec 42sec
C3 1,000,000 1min43sec 3min45sec

Table 11: Computation time of whole distribution function in the fast numerical approx-
imation.

Finally, we examine the computational speed of the fast numerical approximation.
In Table 11, the computation time for Nt = 50 and Nt = 100 cases are shown (other
algorithm parameters are unchanged from Table 4). The computation of P S

m(λ) in step
M-2 is omitted here, but Table 11 includes the time to obtain the values of the cdf at
1,000 loss levels in SL

21. Remarkably, the dependence of computation time on portfolio
size is quite moderate. As a consequence, it takes only a few minutes even for a portfolio
with 1 million obligors. This is in great contrast with Monte Carlo simulation, which
requires computation time roughly proportional to portfolio size.

5.3 Risk Contributions

We first explain how to examine the accuracy of the risk contributions computed by the
fast numerical approximation. Since the r.h.s. of (33) is the expectation value of D̃i

conditional on L̃ ≥ VaR(α), it can be computed by Monte Carlo simulation with a large
number of scenarios. Therefore, we can test the risk contributions to CVaR by comparing
(31) with (33). On the other hand, the risk contributions to VaR are indirectly tested by
the following rationale. Since the risk contributions to CVaR have already been tested
by the above comparison, the accuracy of RC∆

i given by (32) is guaranteed. Thus, by
comparing (30) with (32), we can indirectly test the accuracy of RCi.

In Figures 10-12, we plot the relative errors of RC
CVaR(α)
i between the fast numerical

approximation and Monte Carlo simulation, for all obligors in portfolio C2. Here, the
relative error is defined by

RC
CVaR(α)
i (Monte Carlo) − RC

CVaR(α)
i (Numerical Algorithm)

RC
CVaR(α)
i (Numerical Algorithm)

,

where two sets of Monte Carlo simulation are performed with 100 million and 1 billion
loss scenarios, respectively. The horizontal axis in Figures 10-12 represents the conditional
PD of obligor i given by

∂CVaR(α)

∂Ei

= E
[
D̃i

∣∣ L̃ ≥ VaR(α)
]
.

Table 12 shows the standard deviation of the relative error for all obligors. Two observa-
tions immediately follow from these figures and table. First, the relative error uniformly

21On the other hand, Table 11 does not include the preliminary computation time of lmax, which is
about 10 seconds in portfolio C3, and less than 1 second in C1 and C2.

41



-15%

-10%

-5%

0%

5%

10%

15%

0.01% 0.10% 1.00% 10.00% 100.00%

Conditional PD

R
el

at
iv

e 
E

rr
or

100 million scenarios
1 billion scenarios

Figure 10: Relative error of risk contributions to 99% CVaR between the fast numerical
approximation and Monte Carlo simulation for portfolio C2.

decreases regardless of the conditional PD, as the number of loss scenarios increases. Sec-
ond, the relative error decreases as the conditional PD increases. Hence, we conclude that
the relative error is mainly caused by the statistical error in Monte Carlo simulation, and
the results of the fast numerical approximation are not biased. Figures 13-15 show the
largest 100 risk contributions to CVaR obtained by the fast numerical approximation and
Monte Carlo simulation with 100 million loss scenarios. The two methods give almost
indistinguishable results.

Table 13 shows the relative discrepancy between RCi and RC∆
i for portfolio C2 defined

by
(RC∆

i − RCi)/RCi,

with the statistics (maximum, minimum and standard deviation) taken over all obligors
except the largest one 22. We set ∆ = VaR(α)/1000 for all confidence levels. All statistics
of the relative discrepancy are smaller than 1%, indirectly assuring the accuracy of RCi.

Similarly to the last subsection, we evaluate the statistical error of risk contributions
due to numerical integration. To do this, we first compute risk contributions ten times
for all obligors in portfolio C2, changing only the seed of numerical integration. Next,
the average (Ave) and standard deviation (StDev) of ten results are computed for each
obligor. The results are summarized in Table 14 and Figures 16-21. Table 14 shows the
relative statistical error defined by StDev/Ave, with the mean and maximum taken over

22We exclude the largest exposure here, because its risk contribution to 99% VaR trivially vanishes.
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Figure 11: Relative error of risk contributions to 99.9% CVaR between the fast numerical
approximation and Monte Carlo simulation for portfolio C2.
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Figure 12: Relative error of risk contributions to 99.97% CVaR between the fast numerical
approximation and Monte Carlo simulation for portfolio C2.
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Figure 13: The largest 100 risk contributions to 99% CVaR for portfolio C2.
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Figure 14: The largest 100 risk contributions to 99.9% CVaR for portfolio C2.
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Figure 15: The largest 100 risk contributions to 99.97% CVaR for portfolio C2.

CVaR

99% 99.9% 99.97%

100 million scenarios 1.55% 3.58% 5.41%
1 billion scenarios 0.81% 1.47% 2.17%

Table 12: Comparison of the risk contributions to CVaR between the fast numerical
approximation and Monte Carlo simulation for portfolio C2.

VaR

99% 99.9% 99.97%

Max 0.124% 0.600% 0.031%
Min −0.115% −0.810% −0.039%

StDev 0.004% 0.015% 0.002%

Table 13: Statistics of the relative discrepancy between RCi and RC∆
i for portfolio C2.
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VaR CVaR

99% 99.9% 99.97% 99% 99.9% 99.97%

Mean 0.76% 0.77% 1.09% 0.66% 1.20% 1.85%
Max 3.56% 2.71% 3.67% 2.13% 4.19% 6.69%

Table 14: Mean and maximum of the relative statistical error of risk contributions for
portfolio C2.
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Figure 16: Average and standard deviation of risk contributions to 99% VaR for portfolio
C2.

all obligors except the largest one. The relative statistical error gradually increases as
the confidence level increases. However, as shown in Figures 16-21, the relative statistical
error is smaller than 1%, for most of the obligors with relatively large risk contribution.
This is because the risk contributions of these obligors are explained mainly by name
concentration effect, not by sector concentration effect.

Next, we analyze the stability of risk contributions under the change of Nt and Ng.
This is similar to the stability analysis of risk measures performed previously. The upper
(lower) half of Table 15 shows the errors of the risk contributions relative to Nt = 200
(Ng = 256) cases. The maximum and minimum are taken over all obligors, and all
algorithm parameters except Nt and Ng are set as in Table 4. All relative errors are
smaller than 1%, indicating that continued fraction expansion and discretized valuation
points work quite well.

Finally, we examine the computational speed of the fast numerical approximation in
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Figure 17: Average and standard deviation of risk contributions to 99.9% VaR for portfolio
C2.
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Figure 18: Average and standard deviation of risk contributions to 99.97% VaR for port-
folio C2.
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Figure 19: Average and standard deviation of risk contributions to 99% CVaR for portfolio
C2.
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Figure 20: Average and standard deviation of risk contributions to 99.9% CVaR for
portfolio C2.
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Figure 21: Average and standard deviation of risk contributions to 99.97% CVaR for
portfolio C2.

VaR CVaR

99% 99.9% 99.97% 99% 99.9% 99.97%

Truncation Parameter

Nt = 50 Max 0.223% 0.085% 0.371% 0.071% 0.272% 0.017%
Min −0.250% −0.996% −0.287% −0.037% −0.027% −0.044%

Nt = 100 Max 0.039% 0.035% 0.007% 0.002% 0.007% 0.000%
Min −0.101% −0.025% −0.009% −0.001% −0.003% −0.000%

Discretization Parameter

Ng = 64 Max 0.759% 0.971% 0.651% 0.402% 0.757% 0.776%
Min 0.045% −0.010% −0.197% −0.379% −0.045% −0.168%

Ng = 128 Max 0.322% 0.271% 0.348% 0.133% 0.357% 0.409%
Min −0.089% −0.053% −0.079% −0.108% −0.083% −0.276%

Table 15: Stability of risk contributions under the change of truncation and discretization
parameters for portfolio C2.
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Portfolio N Nt = 50 Nt = 100

C1 1,000 1min03sec 2min43sec
C2 10,000 1min05sec 2min51sec
C3 1,000,000 7min18sec 17min43sec

Table 16: Total computation time for computing whole distribution function and the risk
contributions of all obligors.

computing risk contributions. Table 16 shows the total time required to obtain the cdf and
the risk contributions of all obligors to 99% VaR and CVaR. As in the last subsection,
we consider the cases with Nt = 50 and Nt = 100 (and other algorithm parameters
unchanged). The additional time to compute risk contributions is longer than that for
computing the cdf, for all portfolios. However, the total time remains sufficiently short
even for a portfolio with 1 million obligors.

6 Conclusions

The fast numerical approximation presented in this paper consists of two steps. In the
first step, moment generating function is computed efficiently with sufficient accuracy.
Discretized valuation points play a crucial role to reduce computation time in this step.
In the second step, the moment generating function is transformed into a loss distribution,
through de Hoog algorithm. Remarkably, continued fraction expansion is used here to
improve the slow convergence of an infinite series obtained by discretizing Laplace inver-
sion integral. The risk contribution of transactions can also be computed only by slightly
modifying these two steps.

We have studied the performance of the fast numerical approximation for some sample
portfolios. As a result, the algorithm has been shown to be applicable to a wide range of
realistic portfolios. In particular, whole distribution function is kept uniformly accurate
even in the presence of exceptionally large exposures. The largest source of numerical error
is the statistical error arising from Monte Carlo integration. However, this statistical error
is kept small enough even for strongly correlated portfolios. Moreover, risk measures are
stable under the change of important algorithm parameters. It is also remarkable that
the dependence of computation time on portfolio size is moderate in the fast numerical
approximation. This property is advantageous particularly for large commercial banks.
In addition, we would like to stress that the fast numerical approximation can easily be
implemented by an ordinary personal computer.

Another advantage of the fast numerical approximation is that the risk contribution of
all transactions can be computed quickly and accurately. Tasche (2000) has proved that
the definition of risk contribution in Section 2 is the only allocation method that is suit-
able for performance measurement. The fast numerical approximation thus serves as an
effective tool for evaluating the risk/return profile of a credit portfolio. This performance
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measurement is a first step to proactive credit portfolio management. In addition, the
fast numerical approximation can also support decision-making concerning how a bank’s
total risk capital should be allocated into its business lines.

We enumerate possible extensions of the fast numerical approximation as follows.
First, it is favorable that the algorithm can be applied not only to traditional loans
but also to more complicated debt instruments. For instance, to handle securitization
exposures characterized by tranched structure, it would be necessary to develop more
sophisticated algorithm. Second, it is interesting to consider the case where LGD is
stochastic. This extension is easily done by a slight refinement of the algorithm, provided
that the stochastic LGD model is not so complicated. Finally, we stress that the fast MGF
computation algorithm in section 4 works well regardless of the probability distribution of
the systematic factors. Therefore, the fast numerical approximation can be extended to
deal with systematic factors described by more general marginal distribution and copula
function.
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A Derivation of Risk Contribution Expressions

In this section, we derive the expressions for risk contributions, (32) and (33). To show
(32), we replace partial derivatives in (22) with finite differences as

RCi ' −Ei ·
FL(Ei + ∆/2, VaR(α)) − FL(Ei − ∆/2, VaR(α))

FL(Ei, VaR(α) + ∆/2) − FL(Ei, VaR(α) − ∆/2)
.

From (15), the numerator is written as

FL(Ei + ∆/2, VaR(α)) − FL(Ei − ∆/2, VaR(α))

=
1

2πi

∫ γ+i∞

γ−i∞

eλVaR(α)

λ
E

[
pi(X̃){e−λ(Ei+∆/2) − e−λ(Ei−∆/2)}

1 − pi(X̃) + pi(X̃) exp(−λEi)
ML(λ; X̃)

]
dλ.

=
1

2πi

∫ γ+i∞

γ−i∞

eλ(VaR(α)−∆/2) − eλ(VaR(α)+∆/2)

λ
E

[
pi(λ; X̃)ML(λ; X̃)

]
dλ.

=
1

2πi

∫ γ+i∞

γ−i∞

eλ(VaR(α)+∆/2) − eλ(VaR(α)−∆/2)

λ2

∂ML(λ)

∂Ei

dλ.

=
{

(1 − α+)RC
CVaR(α+)
i − (1 − α−)RC

CVaR(α−)
i

}
/Ei,

Therefore, we obtain an approximate relation between RCi and RC
CVaR(α)
i as

RCi ' −(1 − α+)RC
CVaR(α+)
i − (1 − α−)RC

CVaR(α−)
i

α+ − α−
.

Next we turn to the proof of (33). First, note that the r.h.s. of (33) is written as

E
[
D̃i

∣∣ L̃ ≥ VaR(α)
]

=
Pr({D̃i = 1} ∧ {L̃ ≥ VaR(α)})

Pr(L̃ ≥ VaR(α))
,

=
1

1 − α

{
Pr(D̃i = 1) − Pr({D̃i = 1} ∧ {L̃ < VaR(α)})

}
,

=
1

1 − α

{
PDr(i) − Pr({D̃i = 1} ∧ {L̃ < VaR(α)})

}
. (78)

The joint probability in (78) reads

Pr({D̃i = 1} ∧ {L̃ < VaR(α)}) = E
[
Pr({D̃i = 1} ∧ {L̃ < VaR(α)}|X̃)

]
,

= E
[
Pr({D̃i = 1} ∧ {L̃i− < VaR(α) − Ei}|X̃)

]
,

= E
[
Pr(D̃i = 1|X̃) Pr(L̃i− < VaR(α) − Ei|X̃)

]
,

where we have defined L̃i− ≡ L̃ − EiD̃i, and used conditional independence on the third
line. Since the relation

Pr(L̃i− < VaR(α) − Ei|X̃) =
1

2πi

∫ γ+i∞

γ−i∞

eλ(VaR(α)−Ei)ML(λ; X̃)

λ
{

1 − pi(X̃) + pi(X̃)e−λEi

}dλ
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holds in analogy with (14), we obtain

Pr({D̃i = 1} ∧ {L̃ < VaR(α)})

=
1

2πi

∫ γ+i∞

γ−i∞

eλ(VaR(α)−Ei)

λ
E

[
pi(X̃)ML(λ; X̃)

1 − pi(X̃) + pi(X̃)e−λEi

]
dλ,

=
1

2πi

∫ γ+i∞

γ−i∞

eλVaR(α)

λ
E

[
pi(λ; X̃)ML(λ; X̃)

]
dλ,

= − 1

2πi

∫ γ+i∞

γ−i∞

eλVaR(α)

λ2

∂ML(λ)

∂Ei

dλ. (79)

Hence, (33) is derived from (31) by replacing the joint probability in (78) with (79).

B Padé Approximation

In Padé approximation, a function is approximated by a rational function. It often gives
a much better result than that obtained by Taylor series approximation. Let us consider
a function S(z) that admits a formal power series expansion as

S(z) =
∞∑

k=0

skz
k, (80)

and suppose that two polynomials

PM(z) ≡
M∑

k=0

pkz
k, QN(z) ≡ 1 +

N∑
k=1

qkz
k

are given. Then, a rational function PM(z)/QN(z) is said to be the [M/N ] Padé approx-
imation to S(z), if it satisfies

S(z) − PM(z)

QN(z)
= O(zM+N+1). (81)

Let us write down the condition (81) more explicitly in terms of sk, pk and qk, for two
cases N = M and N = M + 1. Since (81) is equivalent to

S(z)QN(z) − PM(z) = O(zM+N+1), (82)

we have 
sk +

k∑
l=1

sk−lql − pk = 0 (k = 0, 1, . . . ,M),

sk +
M∑
l=1

sk−lql = 0 (k = M + 1,M + 2, . . . , 2M),

(83)
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for M = N , and
sk +

k∑
l=1

sk−lql − pk = 0 (k = 0, 1, . . . ,M),

sk +
M+1∑
l=1

sk−lql = 0 (k = M + 1,M + 2, . . . , 2M + 1),

(84)

for N = M + 1. Solving these equations, we obtain

pk =

∣∣∣∣∣∣∣∣∣
sM+1

H
(1)
M

...
s2M

sk−M · · · sk−1 sk

∣∣∣∣∣∣∣∣∣
|H(1)

M |
(k = 0, 1, . . . ,M), (85)

qk =
(C

(1)
M+1)M+1,M−k+1

|H(1)
M |

(k = 1, 2, . . . ,M), (86)

for M = N , and

pk =

∣∣∣∣∣∣∣∣∣
sM+1

H
(0)
M+1

...
s2M+1

sk−M−1 · · · sk−1 sk

∣∣∣∣∣∣∣∣∣
|H(0)

M+1|
(k = 0, 1, . . . ,M), (87)

qk =
(C

(0)
M+2)M+2,M−k+2

|H(0)
M+1|

(k = 1, 2, . . . ,M + 1), (88)

for N = M + 1. Here, H
(i)
n is a Hankel matrix defined by (39), (C

(i)
n )i,j denotes the

(i, j)-cofactor of H
(i)
n , and si with i < 0 is assumed to be zero.

From (86) and (88), we can explicitly compute the coefficient of the first order term
in (82) as

s2M+1 +
M∑

k=1

s2M+1−kqk =
|H(1)

M+1|
|H(1)

M |
(N = M),

s2M+2 +
M+1∑
k=1

s2M+2−kqk =
|H(0)

M+2|
|H(0)

M+1|
(N = M + 1).

Hence, we obtain

S(z)QN(z) − PM(z) =
|H(1)

M+1|
|H(1)

M |
z2M+1 + O(z2M+2) (N = M), (89)

S(z)QN(z) − PM(z) =
|H(0)

M+2|
|H(0)

M+1|
z2M+2 + O(z2M+3) (N = M + 1). (90)
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Figure 22: Comparison of two approximations to S(z) = ln(1 + z).

This result is helpful in proving lemma 1 in the next section.

Example

Let us consider the case S(z) = ln(1+z), to demonstrate how well Padé approximation
works. The third order Taylor expansion of S(z) reads

S(z) = z − 1

2
z2 +

1

3
z3 + O(z4).

On the other hand, the [1/2] Padé approximation of S(z) is given by

S(z) =
z

1 + z/2 − z2/12
+ O(z4).

The performance of these approximations is shown in Figure 22. In contrast with a large
discrepancy between the Taylor expansion and S(z) for z > 1, the Padé approximation
gives a good result almost everywhere in z < 2.

C Proof of Lemmas

This section is devoted to proving the lemmas presented in section 3. We start with
lemma 3, and then turn to lemma 1 and 2.

Proof of Lemma 3

Since it is trivial to compute the degrees of An(z), Bn(z) and show Bn(0) = 1, we
restrict ourselves to proving (48). It is straightforward to show (48) for n = 1. Next,
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let us assume (48) to hold for n = k (≥ 1). Since Ck+1(z) is obtained by replacing ck in
Ck(z) with ck/(1 + ck+1z), we have

Ck+1(z) =
A′

k(z)

B′
k(z)

,

where we have defined

A′
k(z) ≡ Ak−1(z) +

ckz

1 + ck+1z
Ak−2(z),

B′
k(z) ≡ Bk−1(z) +

ckz

1 + ck+1z
Bk−2(z).

Hence, we obtain

Ck+1(z) =
(1 + ck+1z)Ak−1(z) + ckzAk−2(z)

(1 + ck+1z)Bk−1(z) + ckzBk−2(z)
,

=
{Ak−1(z) + ckzAk−2(z)} + ck+1zAk−1(z)

{Bk−1(z) + ckzBk−2(z)} + ck+1zBk−1(z)
,

=
Ak(z) + ck+1zAk−1(z)

Bk(z) + ck+1zBk−1(z)
,

=
Ak+1(z)

Bk+1(z)
,

and the lemma is proved by induction.

Proof of Lemma 1

Note that, from lemma 3, An(z) and Bn(z) defined by (47) are polynomials of degree
bn/2c and b(n + 1)/2c respectively, and satisfy{

Cn(z) = An(z)/Bn(z),

Bn(0) = 1.
(n = 0, 1, 2, . . .)

Therefore, we expect that Cn(z) gives the [bn/2c/b(n + 1)/2c] Padé approximation to
S(z), if coefficients ck are suitably chosen. This is indeed the case for n = 0 and n = 1, if
we choose

c0 = s0, c1 = −s1

s0

= −|H(0)
0 ||H(1)

1 |
|H(0)

1 ||H(1)
0 |

in accordance with (41).

Now we assume that, for an integer k ≥ 0, C2k(z) and C2k+1(z) are respectively the
[k/k] and [k/k+1] Padé approximations to S(z). Then, it follows from (89) and (90) that

S(z)B2k(z) − A2k(z) =
|H(1)

k+1|
|H(1)

k |
z2k+1 + O(z2k+2),

S(z)B2k+1(z) − A2k+1(z) =
|H(0)

k+2|
|H(0)

k+1|
z2k+2 + O(z2k+3).

56



Hence,

S(z)B2k+2(z) − A2k+2(z) = S(z){B2k+1(z) + c2k+2zB2k(z)}
−{A2k+1(z) + c2k+2zA2k(z)},

= S(z)B2k+1(z) − A2k+1(z)

+c2k+2z{S(z)B2k(z) − A2k(z)},

=

(
|H(0)

k+2|
|H(0)

k+1|
+

|H(1)
k+1|

|H(1)
k |

c2k+2

)
z2k+2 + O(z2k+3),

= O(z2k+3),

showing C2k+2(z) = A2k+2(z)/B2k+2(z) to be the [k + 1/k + 1] Padé approximation.

In a similar way, we can verify that C2k+3(z) is the [k + 1/k + 2] Padé approximation
to S(z), if C2k+1(z) and C2k+2(z) are respectively the [k/k + 1] and [k + 1/k + 1] Padé
approximations to S(z) for an integer k ≥ 0. The proof is thus completed.

Proof of Lemma 2

This lemma can be proved by induction with respect to integer k in (45). For k = 1,
we can show (45) as

q
(i)
1 =

si+1

si

=
|H(i)

0 ||H(i+1)
1 |

|H(i)
1 ||H(i+1)

0 |
,

e
(i)
1 = e

(i+1)
0 + q

(i+1)
1 − q

(i)
1 =

si+2

si+1

− si+1

si

=
sisi+2 − s2

i+1

sisi+1

=
|H(i)

2 ||H(i+1)
0 |

|H(i)
1 ||H(i+1)

1 |
.

Let us assume (45) to hold for all k ≤ l for an integer l ≥ 1. Then, we can verify the
second equation in (45) for k = l + 1 as

q
(i)
l+1 = q

(i+1)
l e

(i+1)
l /e

(i)
l ,

=
|H(i+1)

l−1 ||H(i+2)
l |

|H(i+1)
l ||H(i+2)

l−1 |
·
|H(i+1)

l+1 ||H(i+2)
l−1 |

|H(i+1)
l ||H(i+2)

l |

/ |H(i)
l+1||H

(i+1)
l−1 |

|H(i)
l ||H(i+1)

l |
,

=
|H(i)

l ||H(i+1)
l+1 |

|H(i)
l+1||H

(i+1)
l |

.

It is more difficult to prove the first equation in (45) for k = l + 1. Note first that

C2k+1(z) = c0

/(
1 +

[cmz

1

]2k+1

m=1

)
is the [k/k + 1] Padé approximation to Si+1(z) ≡

∑∞
k=0 si+1+kz

k as shown by lemma 1, if
k ≤ l and

c0 = si+1, c1 = −q
(i+1)
1 ,

c2k = −e
(i+1)
k , c2k+1 = −q

(i+1)
k+1 (k = 1, 2, . . . , l).
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Therefore, if we write down the polynomial B2k+1(z) (k ≤ l) defined by (47) explicitly as

B2k+1(z) = 1 +
k+1∑
m=1

qmzm,

its coefficients qm must satisfy

qm =
(C

(i+1)
k+2 )k+2,k−m+2

|H(i+1)
k+1 |

as derived from (88), since B2k+1(z) is the denominator of the Padé approximation
C2k+1(z). Thus, comparing the terms proportional to z in

B2l+1(z) = B2l(z) + c2l+1zB2l−1(z),

= B2l−1(z) + c2lzB2l−2(z) + c2l+1zB2l−1(z),

we obtain
(C

(i+1)
l+2 )l+2,l+1

|H(i+1)
l+1 |

=
(C

(i+1)
l+1 )l+1,l

|H(i+1)
l |

+ c2l + c2l+1.

Hence

e
(i+1)
l + q

(i+1)
l+1 =

(C
(i+1)
l+1 )l+1,l

|H(i+1)
l |

−
(C

(i+1)
l+2 )l+2,l+1

|H(i+1)
l+1 |

. (91)

Next, let us redefine ck by

c0 = si, c1 = −q
(i)
1 ,

c2k = −e
(i)
k , c2k+1 = −q

(i)
k+1 (k = 1, 2, . . . , l),

c2l+2 = −
|H(i)

l+2||H
(i+1)
l |

|H(i)
l+1||H

(i+1)
l+1 |

.

Then, the corresponding continued fraction

C2k+2(z) = c0

/(
1 +

[cmz

1

]2k+2

m=1

)
with k ≤ l is the [k + 1/k + 1] Padé approximation to Si(z) =

∑∞
k=0 si+kz

k as shown by
lemma 1. Similarly to the above argument, the coefficients of

B2k+2(z) = 1 +
k+1∑
m=1

qmzm

defined by (47) satisfy

qm =
(C

(i+1)
k+2 )k+2,k−m+2

|H(i+1)
k+1 |

,
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as a result of (86). If we compare again the terms proportional to z in

B2l+2(z) = B2l+1(z) + c2l+2zB2l(z),

= B2l(z) + c2l+1zB2l−1(z) + c2l+2zB2l(z),

it follows that
(C

(i+1)
l+2 )l+2,l+1

|H(i+1)
l+1 |

=
(C

(i+1)
l+1 )l+1,l

|H(i+1)
l |

+ c2l+1 + c2l+2.

Hence

q
(i)
l+1 +

|H(i)
l+2||H

(i+1)
l |

|H(i)
l+1||H

(i+1)
l+1 |

=
(C

(i+1)
l+1 )l+1,l

|H(i+1)
l |

−
(C

(i+1)
l+2 )l+2,l+1

|H(i+1)
l+1 |

. (92)

Subtracting (92) from (91), we obtain

e
(i)
l+1 = e

(i+1)
l + q

(i+1)
l+1 − q

(i)
l+1

=
|H(i)

l+2||H
(i+1)
l |

|H(i)
l+1||H

(i+1)
l+1 |

,

which completes the proof.
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