電力

要約

■ 2014年度の販売電力量（10電力ベース）は、冷夏であったことによる冷房需要の減少や景気回復の遅れ等から減少し、対前年同期比▲2.6%の8,266億kWhとなる見込みである（4年連続の減少）。2015年度は、平年並みの気温を前提として、冷房需要の回復と国内景気回復を受け、販売電力量は増加に転じ、8,361億kWhと対前年度比+1.1%となる見通しである。

■ 2014年度の企業業績（10電力ベース、単体）は円安や料金値上げ効果が通期で寄与すること等に伴い、経常益が対前年度比+2.6%となる見込みである。一方、発電単価の高い石油火力による発電電力量の減少等に伴い、経常費用の増加が同+10.0%に抑えられ、経常損益は▲0.1兆円（2013年度は▲0.4兆円）と赤字は大幅に縮小する見通しである。2015年度は再値上げと、燃料費の減少に伴い、経常損益は0.5兆円へと黒字に転じる見通しである。

■ 世界の原発市場における中国勢の存在感が増している。中国は欧米の新型炉の導入を通じて、先端技術の獲得、原子炉の機器・設備や知的財産権の国産化を進めてきた。日米連合の原子炉プラントメーカーは、国際競争において現状優位にあるが、原発の本格的な国際展開に向け着々と環境整備を行い、原子炉の技術を急速にキャッチアップしている中国勢との競合は今後激化する見込みである。我が国にとっては、新たな差別化戦略が求められる中、従来のEPC（Engineering-Procurement-Construction）を中心とした原発輸出モデルを発展させ、政府主導の下、電力会社を巻きこみ、シームレスに連携することで、運転・保守を含めたパッケージでの受注体制を構築することが今後も競争優位性を維持していく上で重要と考える。

Ⅳ産業の動き

1. 4年連続で減少した販売電力量は、2015年度に増加に転じる見通し

2014年度の販売電力量（10電力ベース）は、4年連続で減少し、8,266億kWhと対前年度比▲2.6%となる見込みである。増減率の要因を分析すると、夏場の気温が5年ぶりの低さであったことによる冷房需要増加（＝気温要因）で同▲1.3%、消費増税以降の景気回復が遅れたことによる需要増（＝景気要因（節電・離脱需要影響を含む））で同▲1.2%となった（【図表25-1】）。

需要区分に見ると、家庭用は、2013年度の暖房需要の割落と、2014年度が冷夏であったことによる冷房需要の減少から、対前年度比▲3.3%と減少する。業務用、夏場の気温要因と、新電力のシェア増加等による10電力ベースでの販売電力量の減少から、同▲4.3%となる見込みであり、産業用は、産業の生産活動の減速により同▲0.8%となる見通しである（【図表25-2】）。
2015年度の販売電力量は、平年並みの気温を前提として、2014年度に低い水準で推移した夏場の冷房需要の回復、及び、景気の持続的な回復に伴う需要増が節電や新電力への離脱の影響を上回り、対前年度比+1.1%の8,361億kWhと、プラスに転じる見通しである（図表25-1）。

需要区分別では、家庭用は2014年度の夏の冷房需要が戻ること等により、通期で対前年度比+2.2%を予想している。業務用については夏の冷房需要の戻りが見られるものの、新電力への離脱が続くことにより、10電力ベースで上期は対前年度比+1.1%、下期は同▲0.6%、通期では対前年度比▲0.9%となる見通しである。産業用は、景気の持続的な回復による生産増加により、通期で同+1.6%を予想する（図表25-2）。

図表25-1 販売電力量の増減要因

![販売電力量の増減要因](image)

(注1)数値は10電力ベースの実績値（北海道電力、東北電力、東京電力、中部電力、北陸電力、関西電力、中国電力、四国電力、九州電力、沖縄電力の合算値、以下「10電力」は同様の定義）

図表25-2 販売電力量の見通し

<table>
<thead>
<tr>
<th>電力取引形態</th>
<th>販売電力量 (単位)</th>
<th>13便 (購入)</th>
<th>14便 (購入)</th>
<th>15便 (購入)</th>
<th>13便 (売上)</th>
<th>14便 (売上)</th>
<th>15便 (売上)</th>
<th>15便 (売上)</th>
</tr>
</thead>
<tbody>
<tr>
<td>家庭用</td>
<td>8,480</td>
<td>8,280</td>
<td>8,361</td>
<td>8,182</td>
<td>8,039</td>
<td>8,106</td>
<td>8,012</td>
<td>8,012</td>
</tr>
<tr>
<td>業務用</td>
<td>2,844</td>
<td>2,750</td>
<td>2,810</td>
<td>2,818</td>
<td>2,753</td>
<td>2,813</td>
<td>2,735</td>
<td>2,735</td>
</tr>
<tr>
<td>産業用</td>
<td>3,320</td>
<td>3,220</td>
<td>3,200</td>
<td>3,188</td>
<td>3,132</td>
<td>3,130</td>
<td>3,090</td>
<td>3,090</td>
</tr>
</tbody>
</table>

(注2)家庭用は10電力ベースの実績値

2 原子力発電所の再稼働の遅れから火力発電の高稼働は継続する見通し

2014年度の発電電力量は、対前年度比▲2.8%の8,971億kWhとなる見込みである。発電種別に見ると、火力は、電力需要の減少に伴い、同▲1.9%の6,600億kWhとなる見込みである。水力は、上期に出水率が前年同期を上回
かったが、下期は前年度並みで推移することを見込み、通期で同1.0%の 594 億 kWh となる見通しであり、原子力発電所の再稼働は 2015 年度になる見込みである。燃料種別では、石油が需要の減少に伴い消費量は対前年度比 1.7%の 55,164 千 t と減少し、他燃料は前年度比 3.5%の 52,609 千 t となる見込みである（同表 25-3, 4)。

2015 年度の発電電力量は、電力需要が 2014 年度に比べ増加することから、対前年度比 1.3%の 9,086 億 kWh となる見通しである。発電種別にみると、原子力は、現在新規制基準適合審査が比較的進んでいる原子力発電所のうち一部が再稼働することを見込み、発電電力量は 195 億 kWh なる見通しである。火力については、原子力発電所の再稼働に伴い、下期を中心にこれまでで繰り延べていた定期検査が実施され、発電電力量は 6,414 億 kWh と同 2.8%とならない見通しである。

燃料種別では、引き続き石炭火力への高い依存状態が続き、石炭の燃料使用量は対前年度比 7.6%の 56,611 千 t なる見通しである。原子力の発電電力量增加に伴い、原子力の代替電源として稼働している LNG 火力の一部は発電電力量を減少させることがから、LNG の消費量は同 4.1%の 52,885 千 t となる見通しである。石油は、需要減少と他の電源種の発電電力量増加に伴い、消費量は同 34.1%の 12,850 千 t を予想している（同表 25-3, 4)。

【図表 25-3】発電電力量の見通し

【図表 25-4】燃料使用量の見通し
1. 価上げ効果と燃料費の減少に伴い、経常損益は改善していく方向性

2014年度の経常収益は、円安や、前年度までの料金値上げ改定が通期で寄与すること、北海道電力の再値上げに伴う単価の上昇が、販売電力量の減少やドル建ての燃料価格の下落の影響を上回り、対前年度比+6.6%の19.2兆円となる見通しである。内訳は、販売数量の減少が同▲2.3%、販売単価は円安要因で同+3.2%、料金値上げによる影響で同+1.6%、化工燃料価格により同▲0.4%、その他収益により+0.6%である。燃料費は同▲2.6%と5年ぶりに減少する見通しであり、増減要因は、需要の減少や効率の改善に伴う化工燃料使用量の減少により対前▲6.0%、ドル建ての化工燃料価格下落により同▲5.9%、円安要因で同+9.3%である。経常損益は▲0.1兆円（2013年度は▲0.4兆円）と赤字幅が縮小する見通しである【図表25-5】。

2015年度は、ドル建ての燃料価格の下落が、円安や再値上げ等の影響を上回り、経常収益は対前年度比▲3.5%の18.6兆円となる見通しである。内訳は、販売数量が対前年度比+1.0%、販売単価は、円安要因で同+4.2%、料金再値上げの影響で同+1.9%となる一方、ドル建ての化工燃料価格により同▲10.3%となる見通しである。燃料費は、原子力発電所の再稼働等に伴い石油を中心に使用量の減少が見込まれることから、化工燃料使用量で対前▲6.9%、ドル建ての化工燃料価格で同▲27.1%、円安要因で同+8.1%、核燃料含む燃料費全体では同▲26.0%の5.6兆円と、対前年度比さらに減少する見通しである。経常費用全体では、燃料費が大幅に減少することから、同▲6.8%となり、経常損益は0.5兆円と黒字に転じる見通しである【図表25-5】。

【図表25-5】企業収支の見通し

<table>
<thead>
<tr>
<th></th>
<th>(単位）</th>
<th>13fy（実績）</th>
<th>14fy（見込）</th>
<th>15fy（予想）</th>
</tr>
</thead>
<tbody>
<tr>
<td>経常収益</td>
<td>187,523</td>
<td>192,354</td>
<td>185,541</td>
<td></td>
</tr>
<tr>
<td>経常費用</td>
<td>191,474</td>
<td>193,471</td>
<td>180,250</td>
<td></td>
</tr>
<tr>
<td>燃料費</td>
<td>77,311</td>
<td>75,334</td>
<td>55,757</td>
<td></td>
</tr>
<tr>
<td>購入電力料</td>
<td>29,942</td>
<td>31,585</td>
<td>33,397</td>
<td></td>
</tr>
<tr>
<td>減価償却費</td>
<td>19,224</td>
<td>19,199</td>
<td>19,224</td>
<td></td>
</tr>
<tr>
<td>その他</td>
<td>64,940</td>
<td>67,353</td>
<td>71,872</td>
<td></td>
</tr>
<tr>
<td>経常利益</td>
<td>▲3,952</td>
<td>▲1,116</td>
<td>5,291</td>
<td></td>
</tr>
<tr>
<td>純資産</td>
<td>52,593</td>
<td>52,090</td>
<td>54,801</td>
<td></td>
</tr>
</tbody>
</table>

(出所) 各社プレスリリース資料、各社決算資料等よりみずほ銀行産業調査部作成
(注1) 数値は10電力単位ベース実績値
(注2) 2014年度、2015年度はみずほ銀行産業調査部予想値
(注3) 燃料価格（輸入 CIF ベース）の前提：2014fy 石油 93$/bbl, LNG805$/t, 石炭 95$/t 為替 111 円$/
 2015fy 石油 66$/bbl, LNG544$/t, 石炭 95$/t 為替 125 円$/
2. 原子力発電所の安全対策投資が高い水準で推移する見通し

設備投資は、原発安全対策投資の増加が見込まれる

有利子負債は、設備投資の増加に伴い微増する見通し

2014年度は、設備投資額の抑制に取り組みつつも、再稼働に向けた原子力発電所の安全対策や既設火力発電所の経年化への対応のため、設備投資への投資が増加することが見込まれ、対前年度比+9.9%の2.5兆円となる見通しである。

2015年度も引き続き再稼働に向けた安全対策投資が高止まりする一方、高経年化対策等に伴い系統増強への投資も増加することが見込まれ、同+7.9%の2.7兆円となる見通しである【図表25-6】。

2014年度は、上記の安全対策投資の増加等に伴い、有利子負債が対前年度比+0.5%の25.5兆円となる見通しである。

有利子負債残高は同▲0.4%（25.5兆円）を減少する見通しである。

純資産比率は、2014年度に北海道電力、九州電力への政策投資銀行の優先株引き受による純資産比率の押し上げ効果はあるものの、引き続き赤字が見込まれること。

安全対策投資もあり設備投資額は依然高水準で推移することが見込まれること等から、同▲0.2%の12.2%と依然低水準となる見通しである。

一方、2015年度は経常損益の黒字化が見込まれることから、同+0.7%の12.9%となる見通しである【図表25-7】。

![図表25-6]設備投資額と減価償却費の推移

![図表25-7]有利子負債残高と純資産比率の推移

(出所)【図表25-6, 7】とも、各社決算資料、供給計画等よりみずほ銀行産業調査部作成

(注1)数値は10電力ベース実績値

(注2)2014年度、2015年度はみずほ銀行産業調査部予想値

(注3)なお、有利子負債は、短期借入金・CP・社債・転換社債・長期借入金の合算値

[9.1. トピックス 中国企業の動向を踏まえた日本企業のあるべき戦略 ー電力ー]

英国の原発建設プロジェクトに中国の大原子力事業者が参加

フランスのEDFとArevaが英国で進めている原発プロジェクトHinkley Point Cに、中国の2大国営原子力事業者の中国核工業集団(CGNC)と中国広発合集団(CGN)が共同で資本参加することが関係者の間で注目を集めている。

軍事用から原子力開発を進め、民生利用に転換後も政府・軍の強力な後ろ盾を背に成長してきたCNNCと同じ国営ながら電力担当省から派生し、Areva製PWR等、海外の技術を積極的に取り入れ中国南部をベースに発展
してきた CGN の 2 社は、国内では長年にわたり競合関係にあった。この国営 2 社の手を組み、中国として初となる先進国の原発プロジェクトに参画することで、国際市場における中国の存在感を誇示する意図が出されている。

福島第一原発事故後、中国政府は、既存炉の安全性を担保するため、稼働中だった原発を含む全廃停止させ、包括的な審査・ストレステストを行った。その上で、建設のペースは緩むものの、原子力開発を引き続き推進していく方針を明らかにした。また、新設する原発については、第三世代炉と呼ばれる世界最先端の安全基準に合致したものを原則とする方針を示した。

海外のプラントメーカーが中国に原発を輸出する場合、中国メーカーへの技術移転が条件となっている場合が多い。中国は、技術移転に協力的であった東芝グループの Westinghouse Electric Company (WEC) や、Areva 等から新型炉の導入を通じて、欧米の原子炉技術を獲得しつつ、機器設備の国産化を進めてきた。また、技術移転の受皿として設立した国家核電技術公司 (SNPTC) では、WEC の改良型第三世代炉を改造・大型化することで知的財産権の国産化に進めていく。さらに最近では、CNNC と CGN の独自の技術を融合させた純国産の改良型第三世代炉「華龍」の開発が進んでいるほか、高温ガス冷却炉や、高速増殖炉、トリウム溶融塩炉等、次世代炉（第四世代炉）の実証研究も進んでいる。このように、欧米から導入した新型炉の技術と機器・設備の国産化を通じたプラントメーカーやサプライヤーの育成が、近年の中国の原子力開発を支えており、その技術レベルは欧米に急速にキャッチアップしていると言われている。

2013年11月に公表された「原子力発電企業の科学的発展と協調活動サービス制度の創設」で、中国は原発輸出を重要な国家プロジェクトと位置づけている。具体的には、中国政府は、原発輸入国との関係構築・強化、原子炉の設計、建設、機器製造、技術指導、資金調達を包括的に支援する方針を打ち出した。

【図表 25-8】は、中国と日本の原発輸出実績と二国間原子力協定の締結状況を纏めたものである。

<table>
<thead>
<tr>
<th>国表 25-8</th>
<th>中国と日本の海外原子力事業と二国間原子力協定の締結状況</th>
</tr>
</thead>
<tbody>
<tr>
<td>海外原子力事業</td>
<td>バキスタン（運転中）、英国（建設中）、計画中（基）</td>
</tr>
<tr>
<td></td>
<td>英国（計画中）、計画中（基）資本参加</td>
</tr>
<tr>
<td></td>
<td>米国（建設中）、計画中（基）設備供給</td>
</tr>
<tr>
<td></td>
<td>その他、ミンラニ、アレクサンダー、トロニ、カルガ、アリコンを交渉進行中</td>
</tr>
<tr>
<td>日本</td>
<td>プラントメーカー （中国、香港）、日立、三菱重工が合算で、世界的原子炉の約 50%を輸入</td>
</tr>
<tr>
<td>二国間原子力協定締結国</td>
<td>フランス、ドイツ、英国、アルゼンチン、パキスタン、韓国、カナダ、ロシア、米国、豪州等</td>
</tr>
<tr>
<td>日米連合プラントメーカー</td>
<td>米国、英国、カナダ、豪州、中国、フランス、ロシア、カザフスタン、</td>
</tr>
<tr>
<td></td>
<td>ヨルゲン、韓国、ベラルーシ、トロニ、欧州原子力共同体</td>
</tr>
<tr>
<td></td>
<td>他 31ヶ国</td>
</tr>
</tbody>
</table>

(出所）経済産業省資料等よりみずほ銀行産業調査部作成

日米連合プラントメーカーは、原子炉の受注実績では中国を圧倒しているものの、2 国間原気力協定の締結数では中国が 25カ国と日本を大きくリードしている。2 国間原気力協定とは、核物質等の移転先国における平和的利用や核不拡散を相互に約束する法的枠組みで、原発を輸出入する際に必要な

1 SNPTC は、AP1000 の設計をベースに出力を増加させた CAP1400 の知的財産権を自主化することによって、WEC と合意している。
条約である。このように、中国は将来の本格的な国際展開に向けた環境整備に余念がない。

ここで、原発市場としての中国の規模感も確認しておきたい。福島第一原発事故後、建設ベースは緩やかになったが、現在建設中の原発29基33百万kWは全世界で建設中の原発の約4割に相当する。中国政府は、今後、2020年迄に原発設備容量を現在の17百万kWから58百万kWまで拡大する計画である。更に、IEAによれば、2040年迄に149百万kWまで増加し、米国を抜いて世界最大の原発保有国となる見通しが示されている。

日本の事業者にとって、原発における中国の2面性を意識した戦略が求められる

まず前者についてであるが、現在、中国向け原発輸出でリードしているWECのように、技術移転を前提に、機器生産の現地化を進める事業者にとっては、原発輸出先としての中国は魅力的な市場であるとともに、現地でのサプライチェーンの構築により将来の供給基盤として位置付けることも可能になると思われる。他方、中国国外に自社の原子力サプライチェーンを有するプラントメーカーにとっては、中国への原発輸出による経済的なメリットは、将来の国際競争において自社技術の移転に伴い競争優位性が削られるリスクがあり、中国市場進出の魅力は大きくないと考えられる。

後者については、原子炉技術において中国との差別化が難しくなってくる中、今後如何に日本が輸出競争力を維持できるかが課題だ。具体的なオプションとしては、中国において未成熟なフロントエンド事業（燃料関連ビジネス）の強化や、機器販売・EPC（Engineering-Procurement-Construction）事業からの発展形として、運転・保守までを含めたBOO（Build-Own-Operate）形式やBOT（Build-Operate-Transfer）形式でのパッケージ提案が考えられる。

図表25-9 国別の原子力発電設備容量の見通し（EA）

<table>
<thead>
<tr>
<th></th>
<th>OECD</th>
<th>Non-OECD</th>
</tr>
</thead>
<tbody>
<tr>
<td>日本</td>
<td>392</td>
<td></td>
</tr>
<tr>
<td>中国</td>
<td>624</td>
<td></td>
</tr>
</tbody>
</table>

図表25-10 原発の設備投資累積額（2012-2040）の見通し（EA）

(10億米ドル)
運転・保守の分野では、日本の電力会社等との連携を中心としつつも、部分的には欧米式の運転方式や制度対応に長けた欧米原子力事業者との連携もあり得る。いずれにせよ、今後は原子力事業者と一体となった受注体制を整備することが必要となる。また、巨額の資金調達や原発固有の様々なリスクへの対応を支援する公的金融の在り方についても、諸外国の事例を参考にしつつ、日本の政府や、プラザメーティー、電力会社等が協働することで、踏み込んだ議論が可能になると考える。

輸出先国で原発のオペレーションに関与することは、福島原発事故での経験や教訓を世界と共与し、世界の原発の安全性向上や平和利用に貢献していくという、我が国が国際的な役割を果たす上でも意義は大きい。また、今後我が国が、原子力への依存度を低減させる中で、原発運営の安全性の確保に必要な人材や技術を維持していくことが課題となっている中で、海外における原発の運転・保守に関与していくことはその一つの解決策になりえる。

<table>
<thead>
<tr>
<th>国表 25 - 11</th>
<th>諸外国の原発輸出の受注体制</th>
</tr>
</thead>
<tbody>
<tr>
<td>国名</td>
<td>機器</td>
</tr>
<tr>
<td>日本</td>
<td>プラントメーカー（民間）</td>
</tr>
<tr>
<td>中国</td>
<td>原子力事業者（民間）</td>
</tr>
<tr>
<td>フランス</td>
<td>原子力事業者（民間）</td>
</tr>
<tr>
<td>ロシア</td>
<td>原子力事業者（民間）</td>
</tr>
<tr>
<td>韓国</td>
<td>プラントメーカー（民間）</td>
</tr>
</tbody>
</table>

今後シームレスな連携が求められる

（出所）経済産業省資料等よりみずほ銀行産業調査部作成
（出所）第七回原子力小委員会事務局提出資料よりみずほ産業調査部抜粋

（資源・エネルギーチーム：篠田 篤／山本 武人）
atsushi.shinoda@mizuho-bk.co.jp
takehito.yamamoto@mizuho-bk.co.jp
日本産業調査／49 2015 No.1

特集： 平成27年度の日本産業動向（電力）

この資料は情報提供のみを目的として作成されたものであり、取り引き等の目的としたものではありません。
本資料は、弊社が信頼に足りて正確であると判断した情報に基づき作成されておりますが、弊社はその正確性・確実性を保証するものではありません。本資料のご利用に際しては、貴社ご自身の判断にてなさいますよう。また必要な場合は、弁護士、会計士、税理士等にご相談のうえお取扱い下さいますようお願い申し上げます。
本資料の一部または全部を、権利者等の許可を受けても複写、写真複写、あるいはその他如何なる手段においても複製すること、および弊社の書面による許可なくして再配布することを禁じます。

編集／発行 みずほ銀行産業調査部
東京都千代田区大手町1-5-5 Tel. (03) 5222-5075

みずほ銀行 産業調査部

220